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1.

ADVANCED AIR TRAFFIC CONTROL COMPUTER SYSTEMS

OBJECTIVES AND DEFINITIONS

1.1 INTRODUCTION

1.2

The study effort under FA-03-01, Large Scale Systems, has

resulted in this Final Report describing large computing

systems and software anticipated for the early eighties.

Features expected to be found in large real-time computers of

that era which could handle the large ATC data processing

loads forecasted are emphasized. Software advances which will
affect the situation at that time are also included. Extrapo-
lations are made from current computer hardware, which is described
in detail. Criteria are developed for evaluating the future
systems.

OBJECTIVES AND APPROACH

The objective of this report is to provide information on
hardware/software systems applicable to fourth generation ATC
data processing systems, The approach is through studies of
large real-time computers, ATC computations and algorithms,
and criteria for evaluating large-scale systems.

Following a discussion of ATC data processing requirements in
Section 2, a detailed presentation is made in Section 3 of the
significant features of a number of commercial, military and
experimental machines having capabilities responding to future
ATC needs. Computers described are the IBM 9020, 360/195,
370/165, ARTS III, CDC 7600, STAR, TI Advanced Scientific
Computer, PEPE, the Goodyear Associative Processor and

ILLIAC IV. Correlation and tracking algorithms are reviewed
and compared in Section 4 with some discussion of possible
improvements.

It is hoped that the repertory of techniques presented here will
be useful in defining new systems to meet future ATC require-
ments as they evolve.

The remainder of Section 1 is devoted to brief definitions of
some of the terms used in present-day descriptions of computa-
tion systems.



1.3 COMPUTER HARDWARE

The major components of computers will be reviewed. These
include memories, processors, I/0 processors, I/0 controllers,
and I/0 devices. _

1.3.1 Memory. Memory can be broadly divided into two classes:
main (memory) storage characterized by high speed, and
secondary (auxiliary) storage characterized by large
storage capacity.

Main storage is a general-purpose, addressable, read/
write storage medium used to hold programs and data.
It may be thought of as an array of N, M-bit, storage
registers. Information in a given register may be
accessed by specifying the address or bcation of the
iriformation in the array. The contents of one of the
m-bit registers is the basic unit of storage. Main
storage is random access, i.e., the time required to
access a basic unit of information is independent of
the location of the information in the array. Each
processor is provided a dedicated processor-to-memory
data path, independent of 1/0, to access information
in main storage. '

Random access memories are either read-only (ROM) or
read-write (RWM). The information in a ROM is inserted

at the time the memory is manufactured. It can only

be changed by physically altering the memory. For
equivalent size and speed, read-only memories are usually
lower in cost when mass produced in identical patterns, than
read-write memories. Read-write memories which are
electrically alterable, sometimes are operated as ROM's

in computer systems.

Memories are considered volatile if they lose information
during lapses of power, non-volatile if they do not.
Memories which use magnetic storage elements (cores,
plated wire, etc.) are usually non-volatile and memories
which use active storage elements (semiconductors) are
usually volatile.

Non-volatile memories can be further classified as either
destructive read-out (DRO) or non-destructive read-out (NDRO)
memories. When information is read from a location in a

DRO memory the information stored in that location is
destroyed by the read-out process. To preserve the

stored information, each read-out operation is normally
followed by a restore (write-back) operation. This extra
operation lengthens the cycle time of the memory.

e



Core memories operate in the DRO mode, semiconductor
memories in the NDRO mode, and plated-wire memories in
both modes. Computer main memories have cycle times
between 1/2 and 10 microseconds, and access times between
1/4 and 5 microseconds. The size of these memories is
between 10" and 108 bits. Ferrite core memories still
rule as the chief form of computer main memory.

Recently, IBM! has employed semiconductor memories as
high-speed main storage buffers. The largest of these
has a 32K byte capacity and a 54 nano-second cycle time,
Plated wire memories have found use in military computer
systems where severe environmental constraints limit

the other technologies.

Secondary storage made up of magnetic disks, drums,

and tape, are of large capacity, have long access times
‘and are accessed via input-output instructions. Data
on secondary storage devices are transferred to main
storage,a block of words at a time. Information is
stored in volumes. A volume is a unit of auxiliary
storage accessible to a single read-write mechanism.

A dismounted volume is referred to as external storage.

A sequential-access secondary storage device (magnetic
tape) accesses data by linearly positioning the volume
relative to the read-write mechanism, i.e., moving the
volume forward or backward until the desired physical
record is found. The time required to access a record
is therefore dependent on the position of the desired
record relative to the record presently under the read-
write mechanism.

Direct access secondary storage devices (disk, drum, etc.)
allow random access to data stored on a volume. Informa-
tion is accessed by referencing its location in the
volume. In this respect, direct access devices are
similar to main storage. The time required to access
information may or may not be dependent on the location
of the information. For example, the time required to
access information on a disk includes seek time, the

time required to position the read-write mechanism over
the correct disk track, and rotational delay--the time
required for the information on a track to rotate to a
position under the read-write mechanism.

1 IBM Systems Journal, Vol. 7, No. 1, 1968, Structual Aspects of the
System/360 Model 85 II The Cache by J.S. Liptag.
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Secondary storage devices may be characterized by three
parameters. They are: access time--the time required
to position the first basic unit of desired information
under the read-write mechanism; transfer rate--the rate
in bits per second at which information can be read/
written from/into a volume once access has been obtained;
storage capacity--the number of bits of information that
can be stored on a volume.

The characteristics of present day secondary storage
devices are listed below.

DEVICE CAPACITY ACCESS TIME TRANSFER RATE
Magnetic Tape 50-400 M bit 10 MS-3 MIN 8K-2M bit/sec
Disk 10-6000 M bit  20-500 MS 0.5-16 M bit/sec
Drum 1-150 M bit 8-60 MS 2K-20M bit/sec

In addition b main storage and secondary storage, a
third form of storage known as an associative (content
addressable) memory has recently come into use. Informa-
tion in an associative memory is accessed by content
rather than by address. Each word which is loaded into
an associative memory contains one or more keys which
will be used to access the information stored in the
remainder of the word.

KEY| DATA

ASSOCIATIVE MEMORY DATA WORD

To access a data word the key is presented to the

associative memory. The memory then replies by providing

the data word that matches the key. If two or more

items in the memory can have the same key then the

associative memory must perform some form of multiple

match resolution so that only one reply results. Associa-

tive memories are very useful when table lookup or

fast searches must be carried out. !

The purpose of an associative memory is to provide an aid

to a computer with its powerful simultaneous parallel search
capability. The associative processor is a further extension
to the associative memory in that a limited (serial) arith-
metic capability is added. There are several recent
applications of both associative memories and associative
processors.s"12



1.3.2

The basic cell of an associative array is a flip-flop and
a match circuit. The cells are arranged in the array as
they would be in a normally addressed memory array, N bits
per word, M words long, but with columnar linkages in
each bit column so that each bit of an argument word can
be matched with the equivalent bit in each of the memory
words. Where the totality of the argument bits match

the memory word bits, a match condition is met and a flag
is raised. It then remains for a multiple match resolver
to home in on one. To express this mathematically and
symbolically, it can be shown that:

given word Ay,...Ay, an N bit word to be matched,
from a memory Byy

B11 Bin
Bm1 By
Totality M N
of =Y 1 A eB'
Matched §=1 G ij
Words
Multiple
Totality of Matched Words—+ Match - one matched word
Resolver

Plated wire memories were used to fabricate associative
memories. Now semiconductor chips are being made, but

they are expensive. They are 20 times the cost of ordinary
semiconductor memory chips. However, the price is due to
come down shortly and the use of them is spreading. It
will not be long before associative memories and
associative processors become integral parts of a computer.

Processors. The processor units of a computer are those
elements which decode and execute the instructions of a
program. Processors can be classified as general-purpose
processors, which are capable of solving a large class

of problems, or special-purpose processors which are
capable of solving a restricted class of problems. A
general-purpose processor can be thought of as several
special-purpose processors operating under common control.
Processors contain one or more of the following units:
memory access units (MAU), computational or arithmetic
and logic (ALU), input/output unit (IOAU), control or
instruction unit (CU). The number of units of each type
used and the number of data paths interconnecting the
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units are important in determining. the instruction
execution rate of processors. The control unit decodes
instructions and issues the micro-orders (control pulses)
needed b cause execution of the decoded instructions by
the processor subunits. The micro-orders cause the
processor to fetch the next program instruction from
memory, decode its operation code, fetch any required
operands, carry out the operation, and store the result
in the proper location. Thus, the control unit in
conjunction with the processor automatically sequences
through the program in main storage. A processor may
have a mixture of general-purpose computational wmits
and special-purpose units. Special-purpose units are
used to decrease the time required to perform certain
operations, e.g., complex arithmetic operations. The
memory access unit and the I/0 access unit handle all
processor-to-memory and processor-to-I/0 device
communications.

Fast processors are composed of special-purpose
execution and control elements that can be operated
concurrently. Concurrent operation is achieved by
providing each concurrent unit with its own local
storage (hardware registers) and a local control

unit. Operation of the various concurrent units is
synchronized by the main control unit of the processor.

There is a large disparity between processor computational
speed and I/0 device operating speed. Therefore, most
processors contain one or more special-purpose subunits
known as I/0 processors or channels. These carry on I/0
operations in parallel with processor computations.

They do this by executing I/O programs which are setup
in advance by the computation element of the processor.
On some computer systems with more than one processor,

a complete general-purpose computer is dedicated to the
task of performing I/O operations. When it is. used in
this fashion, the general-purpose computer is called an
I/0 processor.

1.3.3 Processor Organizations. In this section several processor
organizations will be discussed.

The organization of the conventional processor is presented
in Figure 1. The processor contains a memory access unit
(MAU) , input/output access unit (IOAU) arithmetic § logic
unit (ALU), and a control unit (CU).




TO MAIN TO I/0
STORAGE DEVICES

DATA PATH

_____ CONTROL PATH

CONVENTIONAL PROCESSOR ORGANIZATION

FIGURE 1

It processes program instructions in a sequential manner.
A typical sequence of operations required for processing
an instruction proceeds as follows:

1. The address of the next instruction to be
fetched is generated from information in the processor's
control unit at the time of the last instruction
executed,

2. The instruction is fetched from memory and placed
in the control unit.

3. When the instruction arrives at the control unit,
it is decoded. If an operand is required, its memory
address is resolved.

4. The operand is fetched from memory and placed
in the ALU.

5. The result of the operation is stored in the
proper location, either in main memory or in a hardware
register.

6. Steps one thru five are repeated.
Steps 1 through 5 represent the basic cycle of the
machine. A timing diagram which graphically depicts

both memory and processor functions during two basic
processor cycles of operation is shown in Figure 2.
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As can be seen, an appreciable portion of the basic

cycle is spent waiting for instructions, operands, and
results from operations. Two bottlenecks to more efficient
utilization of processors resources are apparent from

this diagram. They are the memory-to-processor data rate
and the long execution time of the instructions.

The concurrent processor uses organizational techniques
to eliminate these bottlenecks. The concurrent processor
allows several instructions to be in various stages of
processing within the processor at the same time. A
timing diagram which illustrates the concurrency among
successive instructions is shown in Figure 3. As can

be seen by comparison with Figure 2, the effective
instruction execution rate has been increased many times
at the cost of some additional hardware.

The organizational techniques used to achieve concurrency
are: memory interleaving, instruction fetch-execution
overlap, execution concurrency and pipelining. Memory
interleaving (see Figure 4) is a technique used to
increase the effeciive data transfer rate between main
storage and the processor.

1L

T

STORAGE STORAGE STORAGE
MODULE MODULE MODULE
1 2 N
[ ] |
3 ] ]

i 1 ]
2N+1 2N+2 3N
N+1 N+2 2N

1 2 N

i)

|

PROCESSOR

INTERLEAVED MEMORY ADDRESSING STRUCTURE

FIGURE 4
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It is implemented by splitting main storage into several
independent modules and arranging the addressing structure
so that n successive words are fetched from n different
modules in one memory cycle. Due to limitations on hard-
ware registers, the n words from the n different modules
are stored in registers during submultiples of the

memory cycle. A delay of one memory cycle is still
incurred when fetching and storing information. But

by assigning successively used instructions and data

to successive storage locations (i.e., different modules)
whenever possible, advantage may be taken of the memory
interleaving. If program branches are infrequent, then
the processor-to-memory data transfer rate can be
increased by a factor that approaches the degree of
memory interleaving. The degree (or amount) of inter-
leaving required for a certain amount of processor
concurrency is dependent on the memory cycle time,
processor request rate and the desired effective storage
access time.

Within the processor, the natural way to increase
jnstruction execution rate is to overlap instruction
fetching and execution. This is accomplished by partition-
ing the processor (see Figure 5) so that instruction
fetching, decoding and operand fetching are carried out

by one unit, and actual execution by a second unit. Each
has its own local control unit so that it can operate in
an independent fashion. The units operate as follows.

The instruction unit prepares an instruction for execution.
It fetches any required operands from memory. When the
necessary preprocessing is complete, the instruction unit
tests the execution unit to see if it is busy. If the
execution unit is free, the instruction unit tells it to
begin processing the instruction that was just prepared.
Immediately after acceptance of the command the instruc-
tion unit starts preparation of the nmext instruction.

Both units are now processing concurrently. If the instruc-

tion unit finishes preparation of the next instruction
before the execution unit completes its processing, it
must wait. If the execution unit finishes first, then

the instruction unit can initiate the execution of the
next instruction and start the preparation of another
instruction. Whenever a branch instruction is encountered,
the instruction unit assumes the branch will not be taken
and continues to fetch instructions from the same sequence
in storage. If the branch is taken, the instruction unit
discards the now-irrelevant data and initiates processing
at the branch location.

«ll=



v 4

MAU ¥ IUCE
INSTRUCTION Pl EXECUTION
UNIT ¢ UNIT
CONTROL CONTROL

PROCESSOR WITH FETCH-EXECUTION OVERLAP

FIGURE 5
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The technique just discussed is known as a single instruc-
tion overlap. Sometimes, this is not enough. The
techniques of pipelinming, internal buffering and execution
concurrency can be used to overcome the limitations
imposed on the inability of the instruction unit and
execution unit to perform at a desired rate.

Execution concurrency is a technique used to increase the
processing capability of the execution unit. To achieve
it, the execution unit is divided into several special-
purpose processing elements, etch capable of executing a
subset of the processors total instruction set. Each
element is provided with its own local unit so it can
operate inan independent manmner. Operations in the
individual elements are initiated by commands received
from the instruction unit. The synchronism required to
insure that instructions are executed in the correct
sequence is provided by tags and interlocks within the
various units and the instruction unit.

Since some elements are designed to execute spe€cial
instructions, execution concurrency, i.e., several
instructions being executed at the same time, can be
achieved when a proper instruction mix is applied. For
instructions which require long execution times, a special
execution unit is implemented; and to balance the total
operation, a certain number of common execution units
according to the average mix of instructions are used.

The ability to process more than one instruction at a time
in the instruction unit and in individual execution elements
can be achieved by using pipeline techniques.

=]l



To implement a pipeline execution element or instruction
unit (see Figure 6), the function to be performed by the
unit, must be broken into several processing steps,
f1, f5, fz, that are hardware implementable. Temporary
storage registers Ry are then installed between
the hardware units that per%orm the between-step processing.
Processing proceeds from time, t = tg, when the first
instruction and data set is loaded into register Ry
At time T = t  + 1, where T equals the pipeline interstage
delay, the second instruction and data is loaded into R
and the output result from the first processing step,

(R{) is baded into register R At time T = tj + 21, a
tﬁ instruction and data set 1Is loaded into register
R1 and f,(R,) resulting from the second instruction and
data set is loaded into R, and f (R ) of the first
instruction set is loaded into reglster Rz. Three
instructions are now ar various stages of processing with-
in the pipeline unit. At time t = t_ + 3t, a fourth
instruction set is loaded into register R, and fl(Rl) of
the third instruction set is loaded into register R, and
fz(Rz) resulting from second instruction set is loaded into
R3 and the final result of the first instruction fO = fz(R3)
is made available at the output of the pipeline unit. The
pipeline is now full and as long as a steady stream of
instruction and data are available, results will come out
of the pipeline at intervals of T seconds.

In the example presented, a three-stage pipeline umnit,

T would be approximately one-third the time required to
process an instruction and data in a non-pipelined unit.

This means that once the startup transient has died away,

a pipeline processing element can process instructions

and data at approximately N times the rate of a non-
pipeline unit, where N equals the number of stages in the
pipeline. A processor which uses pipeline techniques to
achieve execution concurrency is called a pipeline processor.

When using any of the previously mentioned techniques,
internal buffering in the form of high-speed registers,

is usually required to smooth the flow of data and instruc-
tions between the various processor elements. The number

of stages of buffering required depends on the organization
of a processor, the capability of the instruction unit,

the desired rate of instruction execution, and the tech-
niques used to preserve the proper order between instructions.

Processors which use any or all of the above techniques are
called highly serial processors since they process instruc-
tions in a sequential manner.

~-13-
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The Control Unit (CU) in Figure 1 decodes machine-language instruc-
tions and interprets them at the circuit level in terms of the data
transfers and control signals required to execute the instructions. In
many systems a separate hard-wired logic circuit is used to implement
each instruction in the machine language. Microprogramming can be used
to simplify the design of the CU, however, and is finding increasing use
in modern machines. The essential idea is to use a stored program of
microinstructions, each of which sets gates to define a path along
which data or control signals will travel. Microprogramming not only
reduces the amount of circuitry required for the CU but also makes it
economical to provide a richer instruction set at the machine—-language
level.

A completely microprogrammed instruction set also makes it possible
for one computer to emulate another, i.e., for one computer to perform
calculations and logical operations according to the system architecture
and instruction set of some entirely different type of computer.

Microprogramming may be implemented using read-only storage, or
writable storage. In the latter case changes or additions to the
microcode are quickly made, whereas in the read-only case changes involve
mechanical replacement of storage units. If a volatile semiconductor
medium is used for high speed, it must be reloaded each time the power
is turned on, as e.g., in the IBM 370/135 and 145 which use a special
console disk unit for this purpose.

-15-



1.3.4 1I/0 Channels and Processors. Early computers carried on
I/0 operations by having the central processor execute the
I/0 instructions. Whenever I/0 instructions were encountered,
the processors would become dedicated to the I/0 task which
would mean operating at a reduced rate. Handling the I/0
greatly reduced the effective speed of processor operation.

To overcome this, computers were adapted with hardware
“units known as channels which allowed I/0 operations, once

initiated, to proceed in parallel with processor computation.

In the simplest form, a channel is capable of executing

a single I/0 instruction transferred to it from the central

processor. More sophisticated channels are capable of

executing strings of instructions which are stored in

memory. Some computers even have small dedicated processors

known as I/0, peripheral, or satellite processors which

carry out the processor-to-memory data transfers.

Most medium and large-scale computers have one or more
channels that carry on data transfers under the control of
a channel program which is executed independently of the
central processor program. The central processor exercises
control over the operation of the channels. To do this, it
has facilities (hardware and software) for initiating the
operation of a chamnel and for the receiving of completion
signals (interrupts) from the channel. The processor on
receipt of the interrupt stops processing and analyzes the
cause of the interrupt. The cause of an I/0 interrupt may
be due to a normal task completion or due to some form of
error of hardware failure. If the interrupt was a normal
termination then both the data and the channel become
available for use by the processor.

The instruction executed by the channels are of the
following types: data transfer commands, sense commands,
control commands, change of sequence commands., Data
transfer commands are read or write commands which cause data
to be transferred between the I/0 devices and main storage.
These commands specify where in memory the data is to be
placed and the amount of information to be transferred.
Sense commands carry information into main storage
concerning the status of a channel. Control commands
specify device operations such as backspace, rewind tape,
advance paper, etc. Change of sequence commands specify
the location in main storage from which the next instruc-
tion is to be fetched. Both conditional and unconditional
branches are handled in this manner. Channels are usually
one of two types--selector or multiplexer.
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A selector channel is a type of channel which is capable
of carrying on data transfers to one device at a time

on a dedicated basis--several devices may be connected

to a selector channel, but only one may be active during
a given channel program. Transfers are initiated by the
central processor, which supplied the address of the first
instruction of the channel program that will control the
transfer and the identification of the device that will
be used for the transfer. The channel then takes control
and executes the channel program concurrent with CPU
processing., When the program is completed, the channel
notifies the CPU so that another I/0 operation can be
scheduled. A selector channel is said to operate in a
burst mode because the channel is tied up for the entire
duration of the transfer including the time spent waiting
for the device to complete its mechanical operation.

A multiplexer channel is capable of carrying on data
transfers with several devices at seemingly the same time,
in a time multiplexed basis. Low data rate devices then
share the same channel facilities. Information is trans-
ferred to individual devices by broadcasting, simultaneously
over the same set of data lines, the data and the identifi-
cation of the device involved. Associated with each

device is a dedicated group of storage locations for the
storage of all information required to maintain an
independent transfer to a device. The stored information
consists of the address of the next channel instruction,
channel status information, and the channel instruction
presently in process, as well as information such as the
base address of the data buffer in main storage, its size,
and the operation being performed by the instruction. This
information is updated by the channel each time a new
instruction is executed or a data transfer to the device
takes place. Transfers to the individual devices are
scheduled automatically by the channel as the devices _
become available to accept or transmit data. Programs are
initiated and terminated in the same manner as on a
selector channel except the multiplexer channel continues
to process any remaining active channel programs after
notifying the central processor of completion of one
channel program.

Satellite computers and I/0 processors operate in a manner
similar to a multiplexer channel except that the processor
can also perform editing and formatting functions on the
data before it is transferred. More flexible scheduling
is also possible.

-17-



1.3.5

1.3.6

I/0 Controllers. I/0 controllers are special-purpose
devices which interpret the commands broadcast by the
I/0 channels. They are located between the I/0 devices
and the channel to which they are connected. They
provide the timing and sequencing signals needed to make
the I/0 devices carry out the operations specified by
the channel commands.

1/0 Devices. Into the category of I/O devices fall

drums, disks, card readers, large core memories, etc.,

and transducers of various types. They are peripheral

to computers and are connected to them via I/0 channels.

The common characteristics of these devices are response
times, low data transfer rates, and varied control sequences.

1.4 SYSTEM ORGANIZATION

1.4.1

System Configurations. There are a large number of system
configurations (organizations) currently in use. Among
these appear four major configurations.

The simplest and most often used is the single computer
or uni-processor system which is shown in Figure 7. The
processor is connected to memory and to the I/0 channel;
the memory communicates with the processor and the I/0
channel. Connections to the I/0 devices are not shown.
The processing capability of this configuration is
limited by the capability of the single processor in the
system.

MEMORY ¢ — 170 P
CHANNEL

PROCESSOR

e — —

- e o4 @o» Sm» L= S SR e & e

UNI-PROCESSOR CONFIGURATION

Figure 7

To increase processing capability, computer manufacturers
went to the multicomputer system configuration (see
Figure 8). In this system, the processors are often of
different size. Normally, the smaller of the two carries
on the I/0 and housekeeping functions while the larger
acts as the primary computation element of the system.
The two processors are linked by processor-to-processor
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Figure 8

and channel-to-chan:el data links. The channel-to-channel
link is used to transfer information between the main
storage units of the two computers. I/0 devices may also
be shared via this link. The processor-to-processor data
link permits one processor to notify the other that it

is wanted to do something. It is most often used to set-
up storage data transfers.

If both computers are identical and perform large amounts
of computations, then the system is called a federated or
loosely-coupled dual computer system. This configuration
is often used in fail safe processor systems. When used
as such, the processor-to-processor data link is used for
status testing and failure notification.

A multiprocessor system configuration is shown-in Figure 9.

Both memory and I/0 channels are shared by all processors
on equal basis. The processors are often identical, how-
ever, they need not be. If they are, the operating system
assigns tasks to the processors as they become available.
Because resources are shared, the operating system must
resolve the inevitable conflicts, if the system is to
operate. An efficient multiprocessor must minimize the
overhead incurred in resolution of these conflicts.

An organization which differs radically from any of those
discussed previously is that of the array processor shown
in Figure 10. It is composed of N processors, each of
which has its own memory and is able to communicate with
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its nearby neighbors, and a master processor which controls
the operation of the system. Data is entered into the
individual processor memories from the master processor.
The master processor issues the commands that control the
operation of the individual processors. Commands are
global in nature, i.e., the command calls all processors
to perform the same operation. In addition, most parallel
processors have a masking capability which allows them to
inhibit execution of a global command. This facility
allows the processors to perform independent operations.
Processors of this type are most effective when performing
vector or matrix operations.
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1.4.2 Interconnections. Three interconnection techniques used to

tie processors, memories, and I/0 processors together are
shown in Figures 11 through 13. The simplest of the
configurations conceptually is the common data bus shown in
Figure 11. All modules are connected in parallel to the
common bus. The bus may be a word, byte, or bit wide
depending on the desired data transfer rate. Narrower
busses require complex control hardware. Access to the
bus is granted to processors, one-at-a-time, on a time
multiplexed basis. Assuming a fixed memory cycle time,
one possible procedure for controlling access is to allow
each processor access to the bus on successive memory
cycles in a round robin fashion, i.e., Py, P2, Pz, Py, Pl’
P, ... etc. If there are N processors then each wil% be
agle to access memory once every N memory cycles. Herein,
lies the primary disadvantage of the common data bus,
i.e., the waiting time for information increases as the
number of units on the bus increases. This is offset by
the ease with which additional modules may be added to
the bus.
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Figures 12 and 13 show two interconnection methods which
are essentially the same. The multiport memories allow
individual processors to access different memory modules
at the same time. This is accomplished by providing
multiple inputs to each memory module and separate buses
for each processor. A processor's bus connects to one
port on each memory module. If more than one processor
requests the same memory module, then hardware switching
networks within the module resolve the conflict and grant
access to only one of the requesting processors. This
interconnection method overcomes the data rate limitation
of the common bus. However, it has the disadvantage that
the number of modules which can be added to the system

is limited by the number of parts which were designed into
the multiport memory module. The crossbar style inter-
connection technique overcomes this limitation. The
crossbar network is a modular switching network which can
grow to accommodate new memory and processor modules.

One crosspoint switching network is added for each desired
processor to memory data path. A crossbar may be full or
partially full depending on the number of desired data
paths. The memory modules are single port. Conflicts

are resolved within the crosspoint switch in a manner
similar to that used in the multiport memory module on a
column basis. A variety of conflict resolution techniques
is.- possible.

M I/0

P P I/0

COMMON DATA BUS

Figure 11
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1.5 COMPUTER SOFTWARE

One of the sources of the considerable power inherent in general-

purpose digital computer systems has been the concept of the stored

rogram, it being set forth in virtually its present-day form by

von Neumann in 1948 [l]. Then as now, the program was a series of

coded instructions stored in the memory of the computer which, when

interpreted in sequence, caused the computer to (1) accept data

from an outside source, (2) perform calculations on the data,

(3) modify its own sequence of operations on the basis of the data,

and (4) present data to an outside user. Of these, it is the

third--the ability to "interpret' the data and act in various ways

depending on the "interpretation''--that is the key the unique power

of the computer system, for with it the computer may assess alter-

natives and make choices based on complex sets of criteria. This,

coupled with the great speed of the hardware, allows the properly

programmed computer to accomplish tasks of previously unthinkable

complexity.

$

1.5.1 The Development of Compr:iter Programming. The first computer
programs essentially reproduced the patterns which were stored

= in memory. In the binary machines such as von Neumann's, the
entire program could be written as a series of zeros and
ones. The octal system of numbers was soon adopted, however,
for the representation of addresses and numbers in the computer,
and a system of alphabetic characters was used to represent
the instruction codes. Programs thus denoted were said to be
written in machine language and the coding was said to use
absolute addressing.

The difficulty with coding in this way was quickly apparent,
for not only was the resultant series of letters and numbers
an unnatural form for a man to interpret, it was also almost
completely unyielding when it became necessary to make changes
or to correct mistakes. The solution was to allow the man to
deal in symbols for instructions and addresses and to let the
computer itself make the transformation from the symbols to
the absolute numbers they represented. The computer program
that did this task was called a symbolic assembler; it dealt
with programs prepared in assembly language using the tech-
nique of symbolic addressing.

The simple assemblers of the late 1950's were gradually
extended with the incorporation of pseudo-operations
(instructions to the assembler itself rather than parts of
the program being assembled), conditional assembly (actions
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conditioned on the states of switches, the values of constants,
the progress of the assembly, etc.) and in conjunction with
appropriate loaders, relocatable routines (ones whose exact
locations in core are determined at load time—-hence ones
which can be easily used as part of many different programs).

The development of macro-assemblers during the 1960's lead

to today's very powerful assemblers which provide the skillful
programmer with tools with which to write efficient and
capable programs to handle the most complex problems. The
macro-assembler is able to recognize system and programmer
defined macro-instructions, or simply macros, which are

names given to certain patterns of coding which are used
again and again in the program. The use of these macros made
coding easier by reducing the effort needed to write the code,
by making the coding less error-prone and by making changes
easier to incorporate. Extensions in the form of nested
macros, redefinitions within macros and conditional macro
expansions made the concept from a coding convenience to a
useful and powerful tool.

However, the operative word in the paragraph above as applied
to the programmer is "skillful'. As the computer systems
became larger, faster, more capable, the user of the system
found himself less able to cope unless he were a professional
programmer——a situation which led to intensive work in two
areas: high-order languapges and operating systems. The
former were languages intended to allow the non-programmer
specialist to write programs for computers without concern
for the mass of detail implicit in an assembly language
program. On the other hand, operating systems were developed
to manage the expensive and complex computer systems so that
they might be used in efficient and reasonable ways. After

a short look at the subject of data structures encountered

in computer applications, we will take a more extensive look
at each of these subjects.

Data Structures. It is the nature of the mind to organize
facts (data) into structures such that inter-relationships
among the facts may become clear and may be dealt with.
Computers, being highly organized creations of the minds of
men, also deal with data organized in various structures. A
goodly part of any computer program, sometimes explicitly
and at other times implicitly because of the facilities of
the operating system or the programming language, is devoted
to matching the structure of the data to the structures of
the media on which they are stored.
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The structure of a storage medium is frequently described in
terms of the order in which its contents may be accessed.
Clearly, the most general of all is the so-called random
access memory (RAM) where each unit of data has a unique
address, for upon this structure may be imposed any more
restrictive form. Next, in the usual hierarchy is the block
random access memory in which each relatively large collection
of data may be accessed without regard to its place among the
other blocks, but within the block a second level of address-
ing is necessary. Many drum memories are organized this way.
(Note that if the bit is taken as the unit of information,
the usual word or byte addressed memory is in reality block
random access, with the word or byte as the block.)

The serial access memory is the last of the three forms
usually found in systems today. In this form, epitomized
by magnetic tape, access to any unit of information depends
on having had access to all its predecessors.

Note that despite the variety of access means, the underlying
addressing structure in all these storage types has been
one-dimensional. That is, there is a sequence of addresses
from beginning to end such that given any address, the next

may be calculated by a single elementary operation (e.g., add
one). Within this framework, the computer program deals

with data arranged in a number of ways, the simplest to handle
being the file, a collection of elements either unstructured
(random) or sequential. Although random files on sequential
storage media have been difficult to deal with, the availa-
bility of large-scale random access memories and the simplicity
of the file structure have served to make this a rather straight-
forward case.

The array is an important data structure, especially in science
and engineering. A one~dimensional array is called a vector
and a two-dimensional array a matrix. Multi-dimensional
arrays, though specially named, are also frequently found.

One characteristic of array processing is the frequent
application of the same operation to all or many members of

the array at the same time. A single sequential processor
must be programmed to cycle through the array to perform the
required calculations--a not inconsequential task.

Other structures frequently found are strings, lists, rings,
trees and lattices. A string is a sequence of elements,
usually characters, of variable length in which the order

of the elements is the important characteristic. This struc-
ture is found in situations involving message processing
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1.5.3

or other kinds of language interpretation. Those machines
with provisions to address and manipulate characters (bytes)
and character groups obviously are best suited to these uses.

An ordered sequence of elements each of which contains a
pointer to the location of the next item is called a list.
Obviously, the successive elements need not be stored in
successive locations in memory, but may be scattered through-
out. The primary advantage of a list structure is the ease
with which the list may be updated. 1If a new element is to
be added between two pre-existing elements, it may be stored
at any free location in memory and its pointer set to the
location of the successor. The pointer of the predecessor

is then set to this location as its new successor.

A list whose last element points back to the first, forming
an endless loop, is called a ring.

Hierarchical structures are frequently represented as trees.
A tree is a two-dimensional structure each of whose elements
(except first and last) has exactly one predecessor and one
or more successor. The last element of each branch--the
one with no successor--is called the leaf element. If the
first element has a predecessor the structure is called a

rooted tree, otherwise, unrooted.

If, in a tree-like structure, each element has more than one
predecessor, the whole is called a lattice. The various
structures described above are depicted in Figure l.q.l.

=

Programming Languages and Applications Programming. As

mentioned above, the main impetus for the development of high-
order programming languages was the hope that the computer
would be made more approachable by non-programmer professionals
who, after all, were providing the major workload for the
systems. The first of the languages so developed was FORTRAN
(for FORmula TRANslator), intended to allow scientists and
mathematicians to write natural and understandable programs
in what looked like mathematical notation. All of the routine
housekeeping functions as well as input and output were done
by the compiler, based on relatively straightforward standards
and conventions. That FORTRAN is now the most widely used
programming language, and that it even now closely resembles
its original implementation, is a tribute to the great skill
with which it was conceived and executed.
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But good as it was, FORTRAN was not the answer to all of

the needs of computer users. In particular, FORTRAN made no pro-
vision for data structures other than random files and one-

and two-dimensional arrays. Business and financial data
processing make wide use of sequential files and of hierarchies
of random and sequential files, hence a language providing
facilities for the easy use of such structures was called for.
COBOL (COmmon Business Oriented Language) was such a language;

it also provided facilities not found in FORTRAN for defining
business oriented functions.

In 1958, the specifications of what was hoped to be an
international standard mathematical language was published
as ALGOL 58. Since then, new standard versions have been
defined culminating in ALGOL 68 currently being touted.
ALGOL is used as the standard language for publication of
algorithms and has been widely accepted as a programming
language in Europe. It is used to a lesser degree in the
United States but some of its derivatives, notably JOVIAL,
have achieved some acceptance here.

In order to allow convenient processing of lists, such languages
are IPL-V and LISP were developed, and for processing strings
and unstructured text, SNOBOL and TRAC, among others, were
written. Furthermore, in a veritable explosion of effort,
languages have been developed for a vast range of special
purposes, using concepts and language peculiar to particular
fields from civil engineering to making animated movies.

The definitive works on many of these languages have been
collected by Rosen [2].

A newer general-purpose language gaining great popularity

is the IBM-backed PL/1l. This language was developed during
the mid-1960's as an extension to and a replacement for
FORTRAN. It has capabilities in many areas and could well be
a replacement for ALGOL and COBOL, as well as FORTRAN.

When, in the design of a computer system, it becomes
necessary to choose the language in which the applications
programs of the system are written, great care should be
expended to ensure that the one(s) chosen will have the
following attributes. The language should match the task--
though business systems can and have been coded in FORTRAN,
the extra effort hardly justifies the choice. The language
should allow natural expression of the data with which the
system deals--it may be that a special language, or dialect
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1.5.4

of an existing language, should be developed for the applica-
tion. Finally, the language should impose no arbitrary
limits on the development of the system--a built-in maximum
array dimension may make a particular algorithm impossible
or hard to program, for instance.

Operating Systems. As computer systems increased in size and

scope it became clear that major economics would result from
letting the computer assist in the sequencing of tasks and
in the supplying of services. The earliest systems accepted
an input stream pre-stored on tape or from decks of cards
and supplied compilers, assemblers, loaders, sort programs,
core dump programs, etc. from a system library on magnetic
tape. The output was usually stored on tape for later off-
line printing and/or punching. Their objective was to speed
up operations in the so-called 'closed-shop' batch operation.

A parallel development was the building of continuously

running real-time systems. These systems were meant to control
processes while they were taking place--hence real-time.

The command and control systems from SAGE onward are examples
of this kind of system.

A number of pivotal concepts have since been incorporated to
produce the multi-purpose operating systems of today.

Interrupt processing. The key to real-time operation was

the introduction of active interruption of the computer
processing by external devices. Multi-level priority schemes
allow a variety of fast- and slow-speed devices to be monitored
with processing geared to the needs of each.

Multiprogramming. The servicing of slow-speed input/output

devices requires only a small fraction of the time available
on the computer. To make use of this time, operating systems
have been devised which can schedule many tasks at once,
working on each in turn while allowing the slow I/0 to take
place for the others. In this way, expensive equipment can
be used to maximum advantage.

Multiprocessing. As the variety of tasks increased, it became

apparent that some would require a very large part of the total
system while others would require much smaller parts. One way
to operate efficiently would be to supply numbers of each of
the basic computing resources-—computing modules, memory
modules, I/0 channels, etc.--and to assign these resources

on a dynamic basis to the various jobs being run. A machine
with multiple computing elements is called a multiprocessor

and operating in such a.way that a number of tasks are being
processed in parallel is called multiprocessing.
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Interactive Systems. Since the early days of command/control
systems, one aim of system designers has been to build
systems with which men could interact on a dynamic basis.
Despite great strides, there is still a certain barrier
between a human operator and the lightning-fast computer.

The work goes on, however, with indications of success with
direct voice communication, recognition of handwritten
messages, etc.

Time-sharing Systems. The extreme speed of the computers
means that a single interactive user is actually using only
the merest fraction of the computers power. By using the
technique of time-slicing, a single system can be shared
by many interactive users, each of whom thinks of himself as
the only user: the computer assigns each user a few milli-
seconds out of each second and rotates its attention among
them. With proper hardware and operating system, each user
can be assigned enough resources so that it appears that the
whole machine is his. By means of the virtual memory concept,
a total addressable memnry space larger than the main memory
of the computer can be assigned to each user. This is
because most of the memory actually is stored on mass memory
devices outside the machine and only the small part active
g at any one time is brought into the main memory.

2
1.5.5 Summary. A very large part of any computer system is the
software: the operating system and the application programs.
The total cost of this software will usually equal and some-
times may exceed the hardware cost., Modern techniques involving
high-order languages and sophisticated operating systems can
be used to prepare efficient software in an efficient manner.
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2.0 ATC DATA PROCESSING REQUIREMENTS
2.1 INTRODUCTION

In this chapter we will discuss three aspects of the ATC system evaluation
process. In the first section, we discuss the recent efforts to predict
the size of the computing facility needed to carry out the ATC functions
in the 1980's. We do this by considering the estimations of traffic
levels, by considering the effects of increased traffic on the data
processing loads and finally by looking at the estimations made of the
size of the data processing system needed to do 1980 ATC.

The second section will be devoted to a general assessment of the near
future development of air traffic control systems in terms of the hard-
ware and software and their interactions. Large capacity and high
reliability are the characteristics stressed and developments which lead
in their direction are discussed.

The third section is devoted to the evaluation techniques to be anplied
to ATC systems. A description of evaluation measures is followed by a
discussion of the way these measures are applied in system design and
evaluation and to the approaches used to develop these measures.

Finally, a few conclusions are drawn concerning profitable directions for
future efforts in ATC system design and evaluationm.

2.2 ESTIMATIONS OF ATC DATA PROCESSING LOADS FOR 1980

2.2.1 Estimations of Traffic Levels. Probably the best and most recent
forecast of air traffic levels currently available is that done by the
working group (Group IV) on users needs for the DOT Air Traffic Control
Advisory Committee (ATCAC) and reported by Ashby [1,2]. Their estimates
‘Were derived by collecting from the FAA and others [see e.g. 3-6] counts
of numbers of types of aircraft and their utilizations in hours. for the
then most recent year [1968] and forecasts of the same numbers for the
years 1980 and 1995. The basic data used by the group in deriving their
estimates are probably as good as can be obtained; that is not to say,
however, that the data base was entirely adequate, as pointed out by
Ashby, himself. [1, p. 469] .

The measures sought in this study were the annual number of operations
(takeoffs and landings) and the peak number of airborne aircraft for the
years 1968, 1980 and 1995. The numbers derived were: for annual opera-
tions in millions, 128, 222, 519 and for peak airborne aircraft, 12800,
22200, 54400. Approximately stated, the values recorded for both measures
indicates that air traffic levels will double between 1968 and 1980 and
will double again between 1980 and 1995.
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An increase in air traffic does not automatically imply a proportionate
increase in demand for ATC services. As a matter of fact, under rather
modest assumptions as to IFR usage after 1980, the study group estimated
that there would be an increase in IFR enroute flights of three times the
1968 rate by 1980 and eight times by 1995. The load on terminal area
control operations, including possible intermittent positive control
(IPC) and taking into account the fact that some airports are near
saturation now, is estimated to reach 10 to 15 times 1968 levels by 1995.

One could fault these figures only on the basis of having three years
more worth of data available at this time. If one were to work with
FY 71 data when available and take into account the recent and current
drop in airline activity, somewhat different numbers might be derived.
The demise of the U.S.-built SST, as well as the slowdown in general
aviation because of economic factors, could also be included in a new
traffic level forecast.

In sum, the numbers produced for ATCAC as estimates of traffic levels are
the best available at the moment, are probably adequate for the time
being but could undoubtedly be sharpened in light of more recent data.

2.2.2 Effects of Increased Levels on System Operation. There are two

major ways in which increased levels of traffic affect the operation of

the air traffic control system: by causing delays and by causing accidents.
Delays are the result of saturated facilities--mostly airport runways and
loading docks. Queues start to appear at relatively low system loadings--
of the order of half of capacity-—and build up rapidly as various parts

of the system approach saturation. Cost penalties aside, a system operating
in a highly loaded state is subject to stresses caused by transient
phenomena which strain its capabilities to the point where complete
breakdown is a distinct possibility.

-

Safety is, of course, an end in itself--no cost penalties or system
degradation factors need be invoked. Studies done in support of the
ATCAC report indicate that near mid-air collisions (NMAC) and probably
mid-air collisions (MAC) themselves occur in proportion to the square of
the aircraft population in terminal areas unless both aircraft are under
ATC control. [7]

Alexander [8] showed that aircraft interactions per unit time per aircraft
occur about in proportion to the density of aircraft in the regions, as

an upper bound. At the same time, he showed that even with a highly
ordered flight environment, aircraft densities could not exceed about

one per square mile without catastrophe. Fortunately, while aircraft
densities in some areas are at the level where collision avoidance
techniques will soon be mandatory, densities at their worst are not
expected to exceed the levels at which extensions of present ATC tech-
niques will suffice.
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It should also be mentioned that in the situation described so far, it
will not be enough merely to increase the number of controllers and
consoles as the traffic loads increase. There is already a great deal
of interaction among controllers, which will increase as the system
becomes loaded. The required reaction time will decrease, so that each
controller will have more to do in less time. This implies automation
of certain functions to both relieve the controller load and provide
for the added AIC services.

Thus, it is clear that ATC data processing loads will not simply be
increased in proportion to the traffic levels, but will expand faster
than traffic levels, both because of new control tasks and non-linear
expansion of old omes.

2.2.3 Estimations of Data Processing Requirements. The most extensive
recent estimate of data processing requirements for air traffic control
in the future was the one published in the ATCAC report [9] and
summarized in the IEEE Proceedings [10]. In preparing their estimate,
the Computer Sizing Group of ATCAC made a number of basic assumptions
which served to make their task at least tractable. They first of all
created a model of the air traffic control system of the future, :including
a data acquisition system, a control organization and a set of control
functions. Next, they chose a particular terminal and enroute area

(Los Angeles basin) for analysis on the basis that it will be the area
with the highest level of activity in 1980-1995, and estimated traffic
loads for that time frame. On the basis of these assumptions, they
projected variously obtained estimates of terminal and en route instruc-
tion rates and storage requirements to the expected level and obtained
overall processing and storage requirements for the future maximally
loaded terminal and en route centers.

It is difficult to quarrel with the model they have chosen for the ATC
system, for it is reasonable 1n all detail. It does, however, give only
“Yone point in solution space", as the committee puts it, with no indica-
tion of whether it is a typlcal point or an extremum, Their selectlon
of Los Angeles as the area with heaviest air traffic activity was a good
one, but their estimate of traffic levels for 1990-1995% was based on
earller FAA projections of three-fold increases per decade for the next
twenty years. They therefore chose as a basic size assumption, a peak
count of 100,000 air craft airborne simultaneously--ten times the 1969
count. .

* The Sizing Committee made their estimates for 1990, while the Users
Needs groups chose 1995 as their target date. As summarized in the

IEEE Proceedings, the reports of both groups referred to 1995: evidently
an elitorial change was made for a more uniform presentation.
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The Users Needs group, however, in their estimate of traffic loads,
predicted the 1995 peak airborme level as 54,400 [1, p. 473]. This
factor of two could be looked upon as a "factor of safety" or as an
unnecessarily conservative "hedge factor". In either case, it should be
kept in mind when gauging the merit of the data processing load estimate.

The actual estimates of instruction rate and storage requirements were
obtained by the members of the committee from various studies and
proposals on individual subsystems, e.g., collision avoidance, data
acquisition, flow control and command/control. These estimates were

made for the terminal system, the en route system and, in the case of

flow control, the national system. Storage estimates were presented in
words of fast memory and of mass memory with a portion assumed for monitor
use. The instruction rates were estimated for each subsystem in terms

of actual executed instructions per unit time to carry out the function
for the postulated system loading. These instruction rates were then
multiplied by factors which were meant to take into account (1) the

fact that different instructions require different times on most processors,
(2) the monitor operates some of the time to supply services to the
traffic control programs, and (3) the programs will probably be written

in a higher-level language (FORTRAN, JOVIAL) whose compiler produces

less than optimum programs.

Granted that the storage estimates are reasonable, they being based at

least in part on actual counts of existing programs, there is a certain
arbitrariness in the computing power estimates that casts a pall on their
outcome. Even if one were to accept the derived values of instruction rate,*
he should question the values of the three factors applied to them, which
seem more intuitive than objectively derived. So much so, that the two
published versions of the study use different values for the compiler
inefficiency factor--3.0 and 1.5--giving final estimates of system
computational power that are different by a factor of two. .
Perhaps an even more valid criticism is that the choise of a single measure,
MIPS, to describe the computational power of the system is an over-
simplification which could lead to erroneous conclusions. This point is
discussed below at some length.

~

* There are some inconsistencies between values reported in [1] and
[2]--the data acquisition value changed by 10% for the en route case and
17% for the terminal. Furthermore, the estimate given for the en route
command/control already contains the compiler degradation by a factor

of 2. See [11], p. 4-7.
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The study concludes by considering the kinds of computer equipment which
will be available by about 1975 and asking whether an ATC system built
from these equipments would be adequate for the 1980-1990 traffic loads.
Even on the basis of very conservative technological forecasts, they
conclude that the answer is yes and recommend basic configurations of
multiple processors with cache memories, large fast memories and I/0
processors for the en route, terminal and flow control centers. Their
estimates include costs based on projections of current prices to the
1975 period.

2.3 SYSTEM DESIGN CONSIDERATIONS

There are three facets to any computer system design which can be examined
for trends: the overall system architecture, the hardware which makes up
the physical system and the software which directs its operation. These
three aspects are so inter-related, however, that is is difficult to
discuss any one without reference to the others. In the following
sections, the attempt is made startng with the system architecture and
then returning to it after the looks at hardware and software.

2.3.1 System Architectures — I. One of the recommendations of the ATCAC
report was that the computers at the various centers should be of the
multi-processor configuration. This choice was made both because of the
requirement for a range of processing power for different sized terminals
and also the requirement for very high reliability. A modularly
expandable system can meet both requirements: the number of processing
modules can be tailored to the expected load plus an extra to be used in
case of a failed module.

Unfortunately, the computing power of a multi-processor configuration
does not grow linearly with the number of processor modules. There are
two reasons for this: increased overhead associated with more complex
configuration control and delays introduced because of conflicts between
processors attempting to access a common memory module simultaneously.

Multi-processor configurations will be made up of varying numbers of four
major components: input processors, computational processors, output
processors and memory units. In addition, there will be other elements
such as interconnection switching units, reconfiguration units and system
and maintenance consoles with associated keyboard entry and printing
devices. Some mass storage—-such as magnetic tape, drum or disc--

will have to be provided for storage of large amounts of data and for
backup to the main storage. There will also be the entire data acquisi-
tion systems with their interfaces, the display output systems with their
interfaces and message entry devices of various kinds. Other output will
be communications to other centers and possibly, via data link, to the
aircraft.
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1. Input Processor. Input processors of varying capabilities will
be used in any future system to provide for the preprocessing of inputs
from the various sensors, other centers and message entry points within
the center. These equipments will act as data concentrators, regulating
the flow by multiplexing the inputs and providing for quantization,
formatting, queuing and other services. The present-day Data Acquisition
System (DAS), Data Receiver Group (DRG) and Common Digitizer (CD)
fall into this category.

The Input/Output Control Elements (IOCE's) and Processors (IOP's)
currently in use also are in this group. Their functions of controlling
channels and peripheral equipment will be made easier by the increased
use of common, uniform interface modules, such as the Peripheral Adapter
Module (PAM). These processors will be provided with computing
capability sufficient to carry the load of error checking and correction
and data validation independent of the central processing system. Certain
routine computational functions, such as coordinate conversion, could
be performed in the input processor portion of the system.

2. Central Processor. The central processor module will cortinue
to be the computational point in the system, but because of increased
parallelism, each module will become relatively less important to the
system. Since conflict between processors attempting to gain access to
a common memory unit will be a major factor in the use of multi-processors,
efforts on many levels will be made to minimize it. At the system
architecture level, a high-speed buffer, or "cache" memory may become
part of each processor. If these memories are combined with wide data
paths to main memories, the conflicts between processors can be signifi-
cantly reduced.

If the buffer memory were large enough, say on the order of 500K
words, and fabricated using content-addressable memory chips, it could be
organized as an associative memory. Then, various operations such as
matching, greater than or equal, less than or equal, add fields and
multiply fields could be conducted in parallel with maskable arguments.
This type of organization could overcome the chief problem encountered
with associative memories and processors--the time absorbed in shuttling
data across the interface between them and the serial processor used as
a control.

Extensions of the instruction repertoires of central processors will
make them better able to carry out their major ATC functions, as well as
enabling diagnosis of failures and reconfiguration of the system.
Increased word length will be required to implement the new functions
and will also serve to increase effective data transfer rates into and
out of the processors.
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3. Output Processor. All of the output decisions and data will be
processed in the output processor which will be specialized toward
driving displays according to adaptable display filtering algorithms.
Operator requests for display changes will be passed from the input
processor through main memory to the output processor without intervention
by the central processor, thus relieving the load at that point.

The current Computer Display Channel (CDC) and Display Element (DE)
are examples of rudimentary output processors.

4. Memory Units. The trend in memory technology has been toward
faster and larger units to the point where the fastest memories are
compatible with the best CP cycle times and the largest units strain the
addressing capability of all but the longest word machines. Unfortunately,
speed and size have up to now not been achieved simultaneously. This
fact, along with the trend toward multiprocessing, has led to the develop-
ment of modular memory units organized in a hierarchical fashion.

Memory hierarchies and buffer memories are not new, of course, but it
should be pointed out that the hierarchies being projected will be
entirely randomaccess memories with only access time and size differ-—
entiating the various levels.

Modularity of memory will serve the same purposes as multiple
processor units serve--namely, gaining the ability to partition the
system into complete subsystems for independent operations for reliability
purposes and the ability to reconfigure with redundant units in case of
failure.

As an example of how reliability could be achieved, consider the
following adaptation of the SAGE duplex system.

From other centers |Radar and Beacon Data | From other centers
y !
- Input Processor Input Processor
o Detection o Detection .,
o Input Data o Input Data
Central Processor Central Processor
o Tracking o Tracking
o CAS o CAS
o Flow Control o Flow Control
7 <
Output Processor Output Processor
0o Display Filtering o Display Filtering
o Display Driving o Display Driving
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Here, the Input Processor handles the detection process as well as
coordinate conversion and bias correction; it also accepts and formats
input data from other centers. The Central Processor, which might include
a large semi-conductor memory, performs the tracking, collision avoidance,
metering and spacing and flow control functions. The Output Processor
does display filtering and the driving of displays. Output to other
centers and to aircraft for Intermittent Positive Control (IPC) or
other collision avoidance schemes is also handled by the Output Processor.

In this use of a duplex configuration, both systems will be doing
identical computations on the same data set, with one system——say A—-
being designated as the main, or on-line, system and the other, B,
acting as the auxiliary, or backup, system. If an error is detected in
the output of system A, it is switched off-line for fault diagnosis
while B is made the on-line system. The error detection process could
well include an automatic comparison of the outputs of A and B and some
combination of automatic and human resolution of detected differences.

The success of any such simple plan requires a degree of circuit
reliability that is expected to be realizable as the result of ha.dware
developments discussed below. In general, however, system designers will
have recourse to many hardware features which will be used to increase
system reliability. Included will be independent power systems, switch-
over capability, failure detection and correction, redundant organization
and provisions for preventive maintenance.

2.3.2 Hardware Developments. The development of logic devices, circuits
and components in the near future will be aimed at characteristics mentioned
above: capacity and reliability. Very high-speed logic components with
switching speeds of one nanosecond and under will be available using
advanced emitter-coupled logic (ECL) and Schottky-barrier transistor-
transistor logic (TTL). Such speeds are already being approached in
-commercially available lines. (See [12] and [13] for instance.) At

the same time, very high packing densities will be attained with resulting
speed-power products of the order of 25 pico-joules and lower. The
development of other concepts, such as charge-coupled devices (CCD),

could lead to even better speed-power products.

Large-scale integration (LSI) should be an important factor in the market
within a few years and its arrival should influence profoundly the
reliability as well as the complexity of computer circuits. There will be
a reciprocal relationship, however, between the development of new widely
used circuits and the continued development of LSI. If modular circuits,
such as random access semi-conductor memories, can be standardized and
requirements generated for large quantities of them in LSI packaging, the
production techniques will be developed which will result in very much
lower cost for a very much more reliable product. Part of the reliability
will come from the order of magnitude reduction in external connections

in the circuits and part through the error detection and correction circuitry
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within the module. The fact that fabrication cost increases far less
than linearly with circuit complexity makes it possible to produce very
complex circuits economically, if produced in large numbers.

Semi-conductor memories could be a replacement for all magnetic memories
except for very large bulk storages. The one disadvantage of semi-conductor
memories that could prevent this trend is their volatility, i.e., the
characteristic that information stored in them disappears when power is
interrupted. An extensive backup will be required or some new ideas

devised to solve this problem before dependence can be placed on these
memories in the ATC environment with its demand for uninterrupted service.
The only backup at the present time which could provide the instant
response required would be a compeltely redundant memory with independent
power supply.

In the case of control memories, the volatility problem could possibly
be solved by use of a technique suggested by three IBM research scientists
{14]. They point out that due to slight manufacturing variance, within
tolerance, each cell of a memory will tend to return to one of its states
more often than the other when power is turned off and then restored.
They propose to use this natural tendency but accentuating it--in ways
which depend on the actual circuit in question--so that the cell will
always return to a selected state. This state will be determined during
manufacture, limiting the use of the technique to permanent ROM's. It is
expected that the only effect on the performance of the circuit will be
a negligible increase in power dissipation.

Since complexity of circuitry will be an essential attribute of LSI
implementation, it will be possible to design and build modules with
new capabilities--for instance, semi-conductor RAM's which are not omly
location-addressable, but also content-addressable. Thus, parallel-
search capability will be part of each standard processor. At the same
time, array processors of various types and capabilities will be much
less expensive and much more reliable. )
Still newer, presently experimental techniques may reach fruition .in

the next few years and bring new capabilities to an ATC system. An’

example is the so-called bubble memory under development at Bell Telephone
Laboratories. A memory unit using this technology could replace a moderately
sized disk file--10 million to 100 million bits, while occupying 2 to 3
inches of space, using only about 10 watts and providing an access time

an order of magnitude less than the disk.

The Domain Tip Technology (DOT) memories could provide essentially the
same performance gains if developed.
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2.3.3 Software Developments. Over the past few years, it has been possible
to observe a number of trends in software development and it is safe to

say that these trends will continue. On the one hand will be the continued
development and refinement of existing systems~-the application of current
techniques to newer equipment and to new situations. On the other hand
will be the non-evolutionary development of new languages and systems to
take advantage of non-traditional hardware and to apply to unusual situa-
tions. The programming for ATC purposes can be expected to be derived

from some combination of both trends.

The ATC software of the future will have to exhibit three characteristics
if it is to be successful: reliability, efficiency and usability. These
are desirable features in any system, of course, but they assume great
importance in the real-time control environment where human lives are at
stake.

The one development which will have the largest impact on all three is
that of new high~order programming languages which will allow the program~
mer to produce both efficient and error-free code., Increased use will

be made of interactive incremental compilers for these languages which
have analytic powers to test the coding as it is writtem both for
correctness and completeness. Optimization passes will be made on the
generated code to produce routines of maximum efficiency.

In the area of system design, strides will be made in the production of
supervisory systems that are tied very closely to the hardware design

so that the overhead inherent in their use will be minimized. The interest
in supervisory systems is quite intense at the present time and research

in that area should lead to more rational and scientific methods in the
design of the hardware/supervisor system.

As a contribution to the overall system operation, the system software
will incorporate more, better and faster error handling techniques,
Again, these routines will be very closely interlinked with the, newer
hardware implementations to produce extremely efficient operation.

2.3.4 System Architectures - II. As a result of the hardware and software
developments outlined above, the presently observable trend toward new
and unorthodox system architectures should continue. Control memories of
semi-conductor ROM chips will make microprogramming relatively easy and
inexpensive to implement, so that its use should spread from the central
processor to other parts of the system. This implies a decentralization
of the computing power so that memories, peripherals and terminals can
relieve the load on the CP's by doing code translation, data formatting,
coordinate conversions, scaling and the like. This increased parallelism
will also make it possible to construct centers of many sizes and capa-
cities from the same units and with the same programming.
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Rewritable control memories will also contribute to system reliability

by allowing a standard microprogrammed unit to act in a number of capacities.
One might envision a collection of identical processors, each specialized
for a particular job by wvirtue of its control memory contents, with a few
spares ready to be put on-line in any capacity as soon as its control

memory was properly loaded.

As an example of how far this trend might go, consider the Fairchild
Symbol II R computer being installed at Iowa State University [15, 16].
In this experimental machine, the compiler for a high-level language,
called Symbol, and a time-sharing monitor system are hardwired into the
machine. As a result, the compilation rate is said to be an order of
magnitude faster than conventional machines, simply because there is
essentially no operating system overhead involved in the process.
Implementation of the monitor system in the hardware also leads to great
savings in overhead, since operations, such as input/output processing
for example, are accomplished directly rather than through routines which
require elaborate calling and parameter passing sequences.

The extensive use of large, fast semiconductor control memories whose
contents can be easily changed could result in whole systems being
implemented into the so-called "firmware'. 1In systems that remain
relatively constant in function, such as ATC systems, there might be no
stored programs as we know them, memory being used for data and parameter
lists only.

2.4 EVALUATION TECHNIQUES AS APPLIED TO ATC SYSTEMS

2.4.1 Defining System Performance. The traditional approach to system
design has been to analyze the set of inputs and the required set of
outputs and to define, in terms of these sets and the transformation
between them, a cost—performance function to be optimized. It is in the
definition of the cost function that the greatest difficulty generally
occurs, since, for most systems, one is required to assign monetary
value to such unsubstantial qualities as customer impatience or.the effect
of delay in treatment of a sick hospital patient. For real-time systems,
one is constrained, moreover, to provide a cost-effective system which is
able to remain in synchronism with an external source of data, accepting
a (usually) very high percentage of it and producing output within a
(usually) short time. A real-time control system, for instance, is
generally required to produce output within such time that this output
may be fed-back essentially before the next input is generated.

An air traffic control system is a real-time control system with additional
constraints imposed on it: namely, that is never be overwhelmed by the
input data (or at least that it have satisfactory provisions for handling
an overload) and that it never fail (or at least that it fail in a
"controlled" or 'graceful" way).
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Thus, there are three characteristics of the ATC system which require
definition and measurement. The first is a measure of the capacity, or
throughput, of the system. This could be taken to be merely the peak
number of aircraft that can be tracked by the system without degradation
of response. This measure, of course, would relate the capacities of
two systems only if both provided the same functions such as collision
avoidance, etc. In fact, the introduction of additional functions into
the system complicates the definition of capacity; one must develop
throughput measures which reflect the multiplicity of tasks within the
system, the complexity of each task and also the relative amounts of
input to and output from each.

A second characteristic needing definition is response, or reaction, time.
In many systems, each input message triggers a particular output message,
so that reaction time can be measured directly as the interval between
them. In many control systems, the response to an input is observable at
some point in the system and again is directly measurable.

Some facets of the ATC system also exhibit an observable response time.

For instance, the radar correlation and tracking functions work syn-—
chronously with the scan of the radar and produce an output for each

track during the scan--clearly observable. However, a collision avoidance
system (CAS) might produce output only when collisions were imminent. The
CAS functiors response time might be the time between its detection of
collision producing conditions and the issuance of corrective instructions,
while the system response time might be the time between the arrival of

the relative radar data and the receipt of the instructions by the pilot(s).

It is clear then that any definition of response time will have to take
into account a number of factors, some of which are not easy to quantify.

Finally, any ATC system will have to exhibit a very high degree of
reliability not required of most systems. There are many facets to this
characteristic, as well: the hardware must be reliable in the sense

of long MIBF and short Mean Down-time and the programs must be reliable
in the sense of being fully checked-out. In addition, there must be
provision for maintaining system integrity by replacing failed modules
with redundant ones, by switching to backup modes of operation, etc.
There must also be an extensive capability to detect and react to error
and fault conditions, both in software and hardware.
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It is interesting to mnote that surveys of computer system performance
measurement and evaluation published nearly four years apart say very
nearly the same thing about the state of the "Theory of Computer
Performance'. 1In early 1967: ''Progress is designing and applying
information handling systems has outraced progress in evaluating their
performance. As system complexity has increased, the relative adequacy

of existing evaluation tools has decreased." [17, P. 12] In late 1970:
"Today, ...the knowledge necessary to develop such a theory [of computer
performance] is, at best, only rudimentary. ...The need...is substantial."
[18, p.22].

The very extensive 1iterature on the subject shows that a real and considerable
effort is being made to develop the tools needed for computer systems

design, performance measurement and evaluation. In the next section, we

will discuss some of thew, but as a basis for conclusions about their
applicability to air traffic control systems, W€ will first look at some

criteria which ATC systems must meet as regards capacities and responsé time.

1. Input rate - There will be a variety of input/output requirements
jmposed on the ATC center; one of the most important of these is inmput
rate. The input stream will be made up of essentially four components:

(1) very high rate stream from primary data acquisition system (DAS),

(2) medium rate stream from other centers, terminal and/or en route,

(3) low rate stream from back-up DAS and (4) low rate stream from input
within the center. The actual rate in the first stream will depend on

the acquisition system chosen for implementation but will probably be of
the order of 300-500 thousand bits per second (KBPS) for a terminal center
and 100-200 KBPS for an en-route center. The gecond component will be made
up of flight—plan data, hand-over and cross—-tell informatiom, weather data,
etc. and should be of the order of 50-100 KBPS for any one center. Back-
up DAS will no doubt be of low capacity compared to the main system and
might contribute about 10 KBPS to the input rate. Finally, the lowest
input rate will occur from data entry from keyboard, light pen, ,track ball
and other devices within the center itself; some will be controller actions
but others will be flight-plan, weather, configuration and other data
entries. The peak rate from this activity might approach 10 KBPS, but

the average will be well below that level. These estimates are para-
phrases of data given in [9] and [10].

2. Input formats - Somewhere in the total system, in the acquisition
subsystem, the processing subsystem OY their interfaces, the variable
formats of input messages must be rectified. 1t would, naturally, be
preferable from a system design point of view to have compulsory
standard instrumentation in all aircraft (or at least equipment which
produced standard format messages), but this may never be a political
reality. The matter of non-standard messages will therefore be a
criterion on which the system design will be based.
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The back-up DAS may present the same problem unless it relies
entirely on primary radar for its data. A solution for the main system
should apply to the back-up system as well, however.

Input formats for messages from other centers and within the center
itself are presumably under the control of the system designer and can
be manipulated to provide best performance.

3. Input response - The only input streams with stringent real-
time response requirements are from the main and back-up DAS. Even
so, since these messages will presumably be time-tagged and since the
processing programs will presumably work on a sector basis, there will be
a natural opportunity for buffering, so long as the cycle rate is fast
enough to keep up with the stream. Other inputs may either be accepted
character-by-character on multiplexed channels of the input processor,
or buffered at the input device and accepted in a burst transmission.

4. Operating priorities and time constraints — The real-time aspect
of AT” systems comes to the fore when one considers the matters of
priorities and constraints. Certain programs within the system must
operate when called (as, for instance, a collision avoidance algorithm
when an imminent collision is detected) and certain others must operate
within given time frames (as, for instance, all the radar correlation/
tracking algorithms which must run once per scan of the radars). These
conditions will be the prime determinants of the system design; they will
dictate the hardware configuration, executive philosophy and operating
procedures of the successful design.

5. Output rates - The major output streams from the center will
roughly correspond to the input streams: (1) medium data rate components
to aircraft via data link for control purposes, (2) medium rate stream to
other centers, terminal and/or en route, (3) medium rate stream to the
devices within the center and (4) low rate streams in the form of control
information to the data acquisition systems. Estimates of the ‘sizes of
these streams--except that out to other centers which should balance the
amount of input--will depend on decisions as to the amount of control
exercised by the system, the nature of the data acquisition system and
the nature and amount of display to be generated in the centers. Some
of these decisions will be part of the system design process, but others
will be part of the system specification.

6. Overall response time - As indicated earlier, response time of a
real-time system is paradoxically extremely important and frequently
difficult to define and measure. It is tempting to say that the system
"must do the job" but, of course, this is not enough. It is possible,
and perhaps even enough, to list the inputs to the system and assign
outputs to them in such a way that a reaction to each may be calculated,
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but an overall, inclusive measure by which two different systems may
be compared is yet to be enunciated.

On a more positive note, and in line with the preceding suggestion,
certain response times can be listed. The reaction of the correlation/
track prediction algorithms to radar data input has already been noted.
Certainly the reaction to controller inputs should appear to the man,
himself, to be instantaneous. For instance, if he were to request that a
certain track be put in SUSPEND status, the indication on his display
should appear to have been created by a direct connection between the
button he presses and the face of the scope. Again, there must be no
more than a few seconds' delay between the receipt by the DAS of an
emergency code and the appropriate ramifications at the controller's
station (actually the delay might be more meaningful if measured from
the moment of first transmission by the aircraft).

In all, this is an area where careful thought might be most
rewarding.

7. Reliability - The question of reliability has been touched upon
earlier and is extensively treated elsewhere*, so let it suffice that
ATC data processing equipment in the 1990's will have MTBF figures of
greater than 10000 hours. In addition, so-called "fail-soft" and
"fail-safe" modes will be included so that the ATC system essentially
never fails.

8. Capacity - The last criterion to be listed is the elusive one
of capacity, again, already mentioned. If one were able to measure any
quantities he wanted within a system and to take as many samples as he
pleased, he could still not produce a number which could be called the
system capacity. The reasons were mentioned above in general terms, but let us
look at one commonly quoted system measure, MIPS, or millions of instruc-
tions per second.

The chief advantage of MIPS as a measure of capacity is that it is
easy to derive and simple to apply. It is usually defined as the
reciprocal of the length of time in microseconds required to execute a
representative instruction, such as ADD. Unfortunately, only very similar
machines may be compared with this number because there is no account
taken of word length, addressing structure, special instructions or
special architectures. Indeed, to cite an absurdity, a computer with a
2-bit word length, 1 nano-second cycle time and an instruction code
consisting of just ADD would outscore the ILLIAC IV in computing power
as measured in MIPS. Further remarks on this topic may be found in
[17, pp. 14-16].

* See "ATC Computer System Reliability and Recovery" Report of FA-03,
Task 3.

-47-



N_bulous as some of them are, these are the criteria by which ATC
systems will be judged as they are developed.

2.4.2 Evaluation Methodology. The techniques to be used in evaluating
system designs should be chosen on the basis of the evaluation criteria,
or to put it another way, on the basis of the questions about the designs
for which answers are desired. It is possible to draw up representative
sets of questions such that the members apply to different aspects of the
design/evaluation process. One such set might be:

1. Given the expected load, how big should the system be? What
form should the system take?

These questions must be asked, and answered, before and during the
preliminary design phase; the answers will be couched in terms of such
measures as throughput, storage capacities, I/0 channel capacities, etc.
and of such descriptive terms as number of central, input and output
processor, memory hierarchy organizations, I/0 bus layouts, etc.

2. Given an expected load and a proposed system design, will it
do the job? Given two or more system designs, which one will do the
best job?

Once the preliminary design of a system has been prepared, it is
possible to expect answers to this second set of questions, in terms of
response times, capacities, measures of merit and performance ratios.
Note that these questions are in a sense the converses of the first
set, dealing as they do systems at about the same level of detail and
with similar performance measures.

3. Given an overall system design, what is the optimum detailed
design? Given a system cost and/or load, what is the optimum design?

The final selection of components—-type, size and speed—-—will
depend on answers to these questions, however phrased. The answers will
be given in terms of characteristics of specific components; as, a two-
level memory hierarchy with 10 nano-second and 500 nano-second cycle times
and capacities of 64K words and 1024K words, respectively. Presumably,
this is the level at which the final design is decided upon, complete
except for fine tuning.

4. Given a complex system, what is its internal behavior? Given a
complex system, what are its optimum parameter settings?

This is the fine tune and final evaluation stage, at once the
easiest and most difficult part of system design and evaluation. Easiest
because the system exists and is operative, can be loaded and run and
either operates or fails. Most difficult because in its existence, it
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embodies all of the complexity and detail, most of which
is hidden from view and little of which can be even conceptualized, much
less observed and measured.

There are basically four approaches to system design and evaluation,
or to the search for answers to the questions posed above: analysis,
simulation, synthesis and measurement. These approaches are not competitive
nor mutually exclusive, in general. Fach has its place in the process,
as we shall show, and each can be applied and the many levels of the
design/evaluation process.

Analysis - The use of analysis--the representation of physical
processes by means of mathematical equations and formulae and their
subsequent solution--has a long history in system design. It is the first
thing one turns to when conceptualizing the system and is useful during
portions of any phase of the design.

There are two areas of difficulty in the use of analytical techniques
in syctem design, indeed aspects of them are common to other techniques,
as well. The first is in the formulation of the model: in identifying
the important members of the input set, in selecting the dominant inter-—
nal transformations and in choosing the critical output quantities and
then in expressing the relationships among these in cogent form. The
other difficulty is in solving the resulting equations to obtain some
sort of useful result, the most desirable of which would usually be a
general closed solution in terms of easily measurable variables.

But the closed solution is rarely possible except in very simple,
or highly simplified, situations, so that even when it is found, it is of
limited usefulness. Other solutions, such as those obtained by Monte
Carlo simulatjion methods, are available and frequently lead to useful
Xesults.

In the later stages of the design/evaluation process, analysis has
a place in predicting the performance of subsystems, whose relationships
are intrinsically simpler than the overall system; in evaluating alter-
natives in various parts of the system, where these alternatives can be
clearly stated; and in choosing values for parameters, where the effect
of the parameter is reasonably well understood.

Since amnalysis, by its nature, is well understood, it is probably
the most reliable tool for system design and evaluation in spite of its
sometimes difficult aspect.

There have been many attempts to automate the calculations required

for the thorough analysis of a computer system. One such attempt resulted
in a proprietary program of TRW called QUEST, which accepts as its
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input, sets of tables of computer characteristics, routine, or program,
characteristics and parameters governing the particular run. From these,
the program produces tables and histograms of data which are useful to

the analyst in making his design choices. Even in its present rudimentary
state, and it is being extended in scope, this is a valuable tool which
both systematizes and automates some of the essential calculations.

Simulation - Whenever the processes of a system under consideration
are represented by different but hopefully similar processes instead, the
technique is called simulation. Two processes are said to be similar
whose inputs can be shown to correspond in some fashion, whose outputs
can be shown to correspond and whose concomitant transformations correspond.
Presumably, the second system, or model, made up of these "similar"
processes, will be easier to analyse and to build than the primary one
and hence judgments about it will be easier to make than about the primary
system., The closeness with which the system and its model correspond
will have a profound effect on the confidence which can be placed in the
simulation results.

Simulation can take many forms; exponents of the technique with
different implementations often do not even recognize each others work
as simulation. These implementations range from full-scale mockups of
space modules or aircraft cockpits subjected to motions and stresses
expected during real operation to mathematical equations solved on computers
using large numbers of random inputs. Likewise,.in system design, large-
scale simulation of the entire system, using massive computer programs
and many peripheral equipments with recorded real inputs or carefully
simulated inputs, stands at one extreme and quite modest, back-of-an-
envelope simulations, perhaps by means of a time-shared terminal, stands
at the other.

Most simulations of large-scale computer systems will involve the use
of a computer program written for a large-scale computer. This raises the
‘question of when it is better to build the simulation model before building
the system. Clearly, if they are of the same degree of difficulty, take
the same length of time to program and can be controlled and measured
with the same ease, there is no use for the simulation. (An interesting
description of an example of the case in point is given in [19] on
pp. 904-905.)

If, on the other hand, the simulation is, to use an imprecise term,
"believable" and it is simple and quick to implement relative to the base
system, then its use is, as clearly, highly to be desired.
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Synthesis -~ The synthesis of a system is the building of it from
its component parts. It is often possible to infer a great deal about
the performance of a complete system, given the subsystem performances.
Hence, given that the system may be so broken down, it may be of value to
collect such figures and attempt to combine them. As a matter of fact,
a frequent starting point for a system simulation is the set of subsystems
represented as '"block boxes'.

There is no requirement, other than that of maintaining a consistent
level of precision and accuracy, on the manner in which performance figures
for the subsystems are gathered. Some may be obtained analytically and
some from simulation. The performance of certain subsystems may be so
difficult to predict that it is easier to actually build and test them.

This frankly eclectic method is probably the most powerful means
for system analysis available today, suffering as it does only one major
weakness, namely, that the final combination of the parts--the synthesis--
requires knowledge of, or determination of, the interactions betwcen
these parts. Whether the synthesis is by simulation, as mentioned above,
or by analysis, the final results will depend on the correctness of the
representations of the interactions.

In the extreme, perhaps the only way to compare a number of system
designs is to implement and measure them. One computer competition using
this technique is being conducted under the auspices of the Army Ballistic
Missile Defense Agency (ABMDA) in the area of ballistic missile tracking.
Here, the software for the process is being written for each computer so
as to take advantage of its particular forte, and the running time and
accuracy of the solution is being measured. Obviously, this is a very
expensive procedure, rarely justifiable.

) Measurement - The performance of the system itself may be measured
either as a last resort—--analysis having been overwhelmed and simulation
having proved too slow or costly, for instance-—or as a part of the final
design or evaluation phases. Except for minor corrections and adjustments,
this is an after-the-fact exercise: the system, or subsystem, has been
built and is at least partly operational.

In general, two techniques have been developed for system measurement;
one, using extra hardware, monitors and records various facets of the
computer and peripheral operation while the other, using extra software,
monitors and records various facets of the program operation. Both
techniques have drawbacks but both can provide valuable information about
the performance of the system.
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Trke hardware technique has the supreme advantage of not interfering
with the operation of the system in question but has the disadvantages
of inflexibility and relative lack of power. That is, the connections
of the measuring device to the system are semi-permanent and difficult
to reconfigure, in general, and the quantities that can be measured
are frequently not easy to identify with program operation.

The software technique has corresponding but inverse characteristics:
it is eminently flexible with many changes being possible on-the-fly,
during system operation via a terminal. Also, since it is implemented
from programming, it is able to monitor program activity in its own
terms. (Of course, hardware activity can be measured only indirectly by
this technique.) The disadvantageof a software measuring technique is
that it always, to a greater or lesser extent, interferes with the
operation of the system and makes any conclusion dubious which is
dependent on or is affected by timing.

One hardware device that seems not to have been described earlier,
is a small associative processor set up as a computer performance measure-
ment d-»vice. Using passive sensors and detecting the contents of the
instruction register of a computer, the associative processor can be used
to create an updated file on the number of times each instruction has
been used during an application program. The construction of the associa-
tive processor is given below.

[Input Register

256 Associative 256 Counters
Array
32 8 ’

7

[8—bit register]’@——' Output RegisterJ

At each computer execute-time the contents of the instruction register
are transferred to the AP input register and a search is made for a match
in the associative array., If a match is made the contents of the adjoining
8-stage counter is incremented. These counters are fabricated in 4-stage
chips which have an 18 nsec delay per chip. A total of 512 counterchips will
be used. An alarm bit per counter will signal if the 8-stage counter over-
flows. The search-plus-increment time will consume 61 nanoseconds which is
faster than the CPU clock time of most computers.

-52~



An extra tag column attached to the associative array can be used
to denote which words are presently in use. Whenever a new or non-
previously used instruction enters the input register it is deposited in
the lowest available empty word. When 255 words are filled, the 256th
word is used for miscellaneous instructions that are different from the
255th.

When the program is completed the AP memory can be read out by means
of the output register shifted out in 8-bit bytes. A simple analysis
program in the computer can then assemble the data and prepare histograms
and other output.

2.5 CONCLUSIONS

From the above three sections-——on data processing loads, design considera-
tions and evaluation techniques--three general conclusions can be drawn.

First, there is not available at the present time a really definitive
study of data processing system requirements in the 1980-90 decade. While
new traffic estimates may be desirable, the real need is for an up-to-date
study of the shape, form and size of the computing system needed in the
near future. .

Second, the ATC system of even the very near future could be quite different
from anything being used or built today if the latest developments were
pursued. Most of these developments are of an evolutionary nature,

building on current technology, but many could have great effect on overall
system design.

Third, there is no single method by which systems may be designed,
measured or evaluated., Of the four--analysis, simulation, synthesis,
measurement, each has a place in some phase of the process. The most that
gne can say is that (1) analysis is indispensable, during the early

stages especially, (2) small-scale simulation is very useful, in the
middle stages in particular, (3) large-scale simulation is sometimes
justified despite its great cost, (4) synthesis, when used with small-
scale simulation and analysis, is probably the best way to arrive at the
final design, and (5) measurement of system performance is at present in
its very rudimentary stages but will have to become much more sophisticated
if systems are to be properly evaluated.

_53._



References:

[1]

[2]

(3]

[4]

(5]

(6]

[7]

[8]

[91]

T10]

[11]

[12]

[13]

[14]

Ashby, W.L., Derivation of Aircraft Activity Estimates, Report of
DOT Air Traffic Control Advisory Committee, Vol. 2, Appendix G-1,
Pp. 467-477, December 1969.

Ashby, W.L., Future Demand for Air Traffic Services, Proc. IEEE
58.3, (March 1970), pp. 292-299.

FAA, FAA Statistical Handbook of Aviation, yearly editioms.

CAB, Forecast of Domestic Passenger Traffic for the Eleven Trunk-
line Carriers: Scheduled Service — 1968 - 1977, CAB Research
Study, Sept. 1968.

FAA, FAA Air Traffic Activity: Fiscal Year 1968, FAA Office of
Management Systems, August 1968.

ATA, Air Transport Association Airline Airport Demand: Industry
Report, July 1969.

Graham, W., Terminal Air Traffic Model With Near Mid-aid Collision
and Mid-air Collision Comparison, ATCAC Report, Vol. 2, Appendix C-3,
pp. 151-164, December 1969.

Alexander, B., Aircraft Density and Mid-air Collision, Proc. IEEE
58,3, (March 1970), pp. 377-381.

Nelson, J.C., Final Report of the Computer Sizing Group for the 1980
Air Traffic Control Committee, Report of DOT ATCAC, Vol. 2,
Appendix D-1, pp. 221-240, December 1969.

Blake, N.A. and Nelson, J.C., A Projection of Future ATC Data
Processing Requirements, Proc. IEEE 58, 3 (March 1970), pp. 391-399.

Holland, F.C., Computer Sizing of En Route Command and Control for
the ATC Advisory Committee, WP-8272, MITRE Copr., 22 April 1969.

Vacca, A.A., The Case for Emitter-Coupled Logic, Electronics 44,9
(26 April 1971) pp. 48-52.

Franson, P., Schottky TTL Blunts ECL Growth, Electronics 44,5
(1 March 1971) pp. 69-72.

News Item in Electronics 44,5 (1 March 1971) pp. 19-20

~54-



[15]
[16]
[17]
[18]

[19]

News Item in Electronics 44,4 (15 February 1971) p. 25 and
44,8 (12 April 1971) pp. 36-37.

Session 34, SJCC 1971 The New Technology: Computer Architecture,
four papers on Symbol IIR to be published in Proceedings SJCC 1971.

Calingaert, P., System Performance Evaluation: Survey and
Appraisal, Comm. ACM 10,1 (January 1967) pp. 12-18.

Johnson, R.R., Needed: A Measure for Measure, Datamation
(15 December 1970) pp. 22-30.

Campbell, D.J,, and Heffner, W.J., Measurement and Analysis of
Large Operating Systems During System Development, Proc. FICC
1968, pp. 903-914.

-55~



3.

SURVEY OF SYSTEMS AND TECHNIQUES

3.1

3.2

INTRODUCTION

The architecture of individual computer systems, some of which
can handle today's and some which even handle tomorrow's ATC
data processing requirements, will be described in detail.
Four types of systems are included. These are uniprocessors
(CDC STAR and TI ASC are examples), multiprocessors (IBM 9020,
ARTS 1I1), array computers (ILLIAC IV, PEPE), associative
processors (Goodyear AP, New AF AP, HAM-H832).

As explained in the previous section, the evaluation of these,
e.g., reliable performance per unit cost, where cost includes
long range as well as initial expenditures, is a difficult
chore. It has been proven in the past that extra cost produces
a greater performance per unit cost ratio, but since performance
sufficient to solve the air traffic control problems of the
1990's is all that is required, extra capability is not warranted.
The best available evaluation techniques are simulation and
measurement hardware and software, All the major manufacturers
rely on efficiency measuring hardware to produce systems which
make the maximum utilization of components. Some even offer
maintenance (error-detection) software, i.e., monitors which
help isolate failed subsystems and provide continued service
until their service facilities can make repairs.

Intrinsically, the uniprocessor system suffers from the relia-
bility standpoint and a duplex configuration is needed to make
it viable. The same may be said for the associative processor,
which up until now has worked in tandem with a serial processor.
The multiprocessor competes with the duplex configuration
(either with uniprocessors or associative-serial combinations).
Parallelism will work its way in the design of all future
computers; the trend toward large-scale integration circuits
will insure this.

COMPARISONS OF STRUCTURES

The uniprocessor, array processor and associative processors

are structures which utilize a single instruction stream, and
the effort has been to speed up this stream. The multiprocessor
uses multiple instruction streams and the effort here has been
to reduce lock-ups or interferences and make the processing
operate more smoothly. The uniprocessor employs a single data
stream and a single instruction stream while the others employ
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multiple data streams with a single instruction stream or a
single data stream with multiple instruction streams. Multiple
data streams controlled by a single instruction stream is the
mode which is common with array and associative processor.

The uniprocessor often relies on parallel organization to
speed up the throughput of the execution element. Memory
look-ahead and separate I/0 processors relieve the execution
element. A large main memory saves going to secondary storage.
It is not astonishing to find that the costly item of the
uniprocessor is the central processor. Adherents to this
structure feel that it can do nearly all jobs most efficiently;
keeping in mind that greater performance per cost is achieved
(Grosch's law) by paying more for a 'speeded-up" processor.

Array processing assumes that it is more efficient if several
data streams are processed simultaneously. In the standard
type, multiple processing units are stimulated by a primary
processing stream. The individual processing element has its
own stored program which can be tailored to its specific data
stream. The second type, or associative processor, depends
upon logic-in-memory, i.e., each memory bit has a match circuit
attached which permits content-addressing. This type of memory
costs more, about one-half of the system, but permits fast
parallel search operations.

Array processing becomes inefficient when processing elements
are idle most of the time. The processor arrays become more
productive when decision-making and logic capabilities exist at
the lower levels.

The multiprocessor contains several processors, each capable
of performing the tasks alone, sharing memories. The total
problem is segmented and each segment is performed autonomously.
There is, therefore, a dynamic allocation of segments of the
problem among the available processors and a substitution of
processors in the event of the failure of one. Since there is
an overhead charge (both hardware and software) for this type
of system structure and since the concept of substituting
several small computers for a large one is a violation of
Grosch's law, the multiprocessing advantages are reduced. The
prime justification for this structure is reliability. There
is not much evidence as to the actual reconfigurability that
has been obtained.

After this prologue, the individual computing systems which will
influence future ATC data processing systems will be reviewed.
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3.3 1IBM 9020 MULTIPROCESSOR

The 9020 is a special configuration of IBM 360 components
especially modified and assembled to operate as a multiprocessor
at the NAS ARTCC's. As such, it is an application of third-
generation computer technology to a specialized function,

namely air traffic control.

The computer hardware system was planned to operate with the
monitor system provided (the NAS monitor) so that its particular
features make sense only in the particular environment in

which it will be found. Hence, this discussion will treat

the computer-monitor combination as a whole.

There are three versions of the 9020 extant, the A, D and E
models: the 9020A is the original version using 360/50
components and the D and E are later versions using 360/67
components. The original plan, which would have used the
9020A for the complete processing at a center, has given way
to a nmew arrangement in which the major computing load at a
center (radar correlation, tracking, flight plan processing,
etc.) is done by a 9020D which passes data to a 9020E for
display preparation and generation.

3.3.1 System 360 Features. Since the 9020 has been developed
-~ from 360 components, it shares with that system a number
of architectural features, which we will discuss at
this point. The most obvious involve the combination

byte/word orientation of the machine and the general
register approach to the computing element. Memory is
addressed in 8-bit bytes while arithmetic is done,

for the most part, on 4 byte, 32-bit words in a group
of 16 registers which serve as accumulators, index
registers or base registers. The familiar 360 order
code, including binary, decimal and floating-point
arithmetic and logical operations, is implemented in
the computing elements. The 360 1/0 pattern is also
familiar: start and stop instructions in the CE's,
with I/0 channel commands in main storage accessible
by the channel controllers. The interrupt capability
and arrangement are likewise as implemented on the 360
system. Finally, the two states, supervisor and problem,
have been implemented, so that the monitor can run in
the supervisor state in the familiar way.

To the programmer, the 9020 is basically a 360 with
additional capabilities; in fact, the 9020 can operate |
in the 360-mode by suppressing these special features,
Hence, many useful programs have been carried over from
earlier efforts to the 9020 and can operate unchanged.
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3.3.2 9020 Features. All three 9020 systems have certain
characteristics or features that have been developed by
IBM to deal with the special environment in which they
will be used. The objective of these features is to
provide a system that is ultra-reliable and which is
modular, for adaptation to particular sites. Both
requirements were met by making the 9020 a multiprocessor
system with redundant components and a reconfiguration
capability. That is, the system (including the Operating
System) is able to detect errors and failures and to
initiate remedial action automatically.

In the first phase, the so-called "fail-safe'" mode, a
failing element is replaced by a spare element of the
same kind and the system is reconfigured to carry on as
before the failure. The whole operation should take no
longer than 30 seconds and be accomplished without
operator intervention. The second phase is called the
"fail-soft" mode and is really a graceful degradation of
a system which cannot continue in complete operation.

By means of a pre-established schedule, the system
reconfigures as best it can and drops out non-essential
functions while slowing down the less critical functions
until the processing load is reduced to the limited
capability of the partially failed system.

A, Multiple Computing Elements. With this as

background, one can examine the 9020 features required
over and above the 360 capability. First is the require-
ment for multiple processors: 1in order to provide
varying amounts of computing power at different sites
and, at the same time, allow for redundant computing
elements, it is most economical to provide a single size
of CE which can be used in a multiprocessor configura-
tion with varying numbers of the common CE working
together or serving as backup. The system has‘been
organized so that the control program can be operating
in any or all of the CE's simultaneously, that is, there
is no master-slave relationship among the processors.
In general, the operational subprograms--the ones which
do the ATC work--operate in the CE's, while the control
program takes control only to answer interruptions from
1/0 operations, end-of-job, interval time-outs, etc.

Special instructions have been implemented on the 9020E
processors to enable them to process radar and weather
data and produce display tables for storage in the
Display Elements, described below, and eventual use in
driving operator displays.

B. Storage Elements. The main memory of the 9020
system consists of modules called storage elements (SE).
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These are of several sizes and speeds. The original
elements contained 32K 4-byte words with a 2.5 usec
read and restore cycle time. Elements of the same type
with twice the capacity (65K) were later made available.
The SE's used in the D/E series have 65K 8-byte double
words with a double-word read-restore cycle of 0.8 usec.

Each byte in these memory units is directly addressable
and special hardware registers are provided to make
automatic translation of logical addresses to physical
addresses, Thus, it is possible to configure the SE's
in any order by changing the contents of the logical-
physical correspondence registers.

The cycle time of the SE on the 9020 D/E is not directly
related to that of the CE, so that each can operate at
its optimum speed. Data are transferred to the CE a
double-word (eight bytes) at a time and to an IOCE

(see below) one wor? at a time. Further, memory inter-
leaving for odd/even double-words is provided. These
three--independent cycle times, double-word transfers
and memory interleaving--will tend to reduce the impact
of memory interference between two CE's trying to access
one SE simultaneously by allowing the SE to grant
accesses & its maximum rate not constrained by the
earlier access, by reducing the number of separate
accesses required by each CE and by allowing essentially
simultaneous access about 50% of the time.

C. Input-Output Control Elements. Input and
output are under control of the Input-Output Control
Elements (IOCE) in the usual 360 fashion. The CE's
issue start and stop instructions to the IOCE's which
then read from a sequence of pre-stored I/0 commands
in memory and initiate the I/0 actions independent of
the CE. Completion of the I/O processes cause I/0
interruptions to be generated which are routed to the
proper CE for interpretation. Each IOCE has one multi-
plexer (shared) channel and two selector (single-device)
channels, all of which it can operate simultaneously.
(There is an option to add a third selector channel to
as many as two IOCE's in the system.)
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Originally, the control of I/O was the whole of the task
assigned to the IOCE's. It was seen, however, that since
they were really heavily adapted CE's, they possessed

a great deal of processing capability that was going unused.
This capability was made available to the system by a
direct control path from the CE's and implementing an
instruction in the CE which would start the IOCE

processor and an interrupt from IOCE to CE to signal
end-of-job or other condition.

The IOCE in these later models can be thought of as

two distinct elements sharing some common logic and a
32K word 2 usec internal memory--the so-called Main-
tenance and Channel (MACH) memory. The two elements,
the IOCE-processor and IOCE-channel controller, can
operate independently and simultaneously. The IOCE-
processor can neither initiate its own or other IOCE-
processor operation nor initiate I/0 operations. It
can, however, under control of a CE execute a subset of
the 9020 instruction code accessing either main storage
or MACH storage for its instructions or data. Decimal
and floating-point arithmetic are not part of the IOCE-
processor instruction set.

D. Peripherals. Various kinds of peripheral
equipment must be operated by or must supply data to the
9020 complex. Most of these devices operate through
the channels of the IOCE after interfacing with various
special and standard adapter units, In particular, a
Peripheral Adapter Module (PAM) is supplied in order to
interface the various radar, controller keyboard,
interfacility and other inputs. Tape Control Units and
Data Adapter Units interface with Magnetic Tape Units
and radar keyboard multiplexers. Finally, a system
console communicates with a multiplex channel on the
one hand and a printer and card-reader/punch on the other.

E. Display Element. A component of the 9020
system unique to the 9020E is the Display Element (DE),
a memory of 32K 8-byte words. This memory differs from
the usual SE in that it has special features to enable it
to operate as a I/0 controller, in effect, for a group
of Display Generators (DG) connected to it. Each DG
contains 6 Character Vector Generators (CVG), each of
which, in turn, controls a Plan View Display (PVD).
Eight Display Generators may be connected to a DE, but
only four of them may be active at any one time; each
DE, therefore, may be controlling the displays on as
many as 24 PVD's at a time. (Note: the DG's, CVG's
and PVD's are not part of the 9020E system, but are
supplied by other manufacturers for connection to the
9020E.) : ;
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3.3.3

In order that all of the display devices are refreshed
at the maximum rate and at the right times, the DE has
been constrained to operate synchronously. The CVG's
request data asynchronously but requests are granted on
the basis of a fixed priority scan. Data are transmitted
16 bytes at a time to the CVG's at their assigned time
if they are requesting service at that time. If a CVG
does not use its time slot, it is made available to a
requesting CE, if any. If there is none, the slot
remains unused. (The CE's also are allowed an access
after every 8 CVG accesses.)

The displays are refreshed at a maximum rate of 55 times
per second by requiring that initialization take place
only at fixed times clocked at that rate. If regeneration
takes longer than 557! seconds, it is allowed to occur
continuously to maximize the refreshment rate.

To the CE, the Display Element looks like any other
Storage Element.

Operational Configurations. The minimum configuration

must obviously have at least two of each element for.
redundancy purposes. The normal maximum configurations
plus the expansion possibilities are given in Table I.
The expansion possibilities require additional logic

as well as down-time for installation in the field in
most cases.

TABLE I

Maximum Normal Configuration and Expansion Possibilities

CE

SE

DE
JOCE*
TCU

9020D 9020E
3+ 1 3+ 1
8 + 2 4 + 1
- 4 + 1
3 2 +1
3 2 +1

* Each IOCE has two selector channels and one multiplexer
channel which is expandable to three selector channels and
one multiplexer if the total of selector channels is not
greater than eight.
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Each element of the system contains a Configuration
Control Register (CCR) which is set by a Set Configura-
tion (SCON) instruction issued by a CE. Which CE's can
issue the SCON and which elements will react to it depend
on the contents of the CCR's of the elements involved.
The CCR consists of three fields: the state field,

the set configuration field and the communication field.

The state field puts an element into one of four states,
3, 2, 1 and 0, which correspond roughly to on-line active,
on-line redundant, off-line available, and maintenance.

A CE can issue the SCON instruction only if it is in
states 3 or 0. The system can be so configured that an
element check (ELC) in the active CE will cause a
redundant CE to be made active (its state changed to 3)
and be interrupted causing a transfer to an error routine
which will then cause the newly active CE to take over
the functions of the failing CE,

The set configuration field determines the CE's which

are allowed to set configurations, i.e., to change CCR's.
The communication field determines the elements to which
the element in question will '"listen'. For two-way
communication, element A listens to element B and element
B in turn must be able to listen to A.

Communication between CE's may be accomplished in three
ways. First is through the sharing of a storage element,
wherein one CE writes and the other reads. Premature

or interfering accesses are prevented by the use of a
TEST AND SET instruction, which allows a CE to gain
access to the memory and lock out any other CE until

it has finished whatever processing it needs to do.

Secondly, a Direct Access connection is implemented
which allows one CE to interrupt another and to, transfer
a byte of information directly.

Lastly, a channel-to-channel adapter has been provided
which allows CE's to establish communication via two
IOCE's properly configured. In fact, it is this feature
which is used to connect a 9020D in the Central Computer
Complex (CCC) to a 9020E in the Display Channel Processor
(DCP) of a complete ARTCC.
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wonl length (bits)
word length (bytes)

instruction rate
(MIPS)

failure rate
MTBF (hrs)

effective memory
cycle time for
32 bits (nsec)

processor cycle time
(nsec)

add time (usec)
multiply time (usec)

memory parity bits
(bits/word)

main memory size
(1K words)

error detection in
logic

automatic instruction
retxy

automatic reconfiguration

hardware subsystem
failure detection

compilers

operating system
mean up time (hrs)

mean down time (hrs)

9020A

32

)

61.7%

2500

500

5.00

28.38

65-384
yes

no

FORTRAN - COBOL
JOVIAL

NAS 0S/360
33543

0.29
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9020D

32

2,11

200

200

1.63

5.03

260-1300
yes
no

yes

yes

FORTRAN, COBOL
JOVIAL

NAS 0S/360

3
>1000( )

.0

9020E

32

2.1(1)

200

200

1.63

5.03

260-650
yes
no

yes
yes

FORTRAN, COBOL
JOVIAL

NAS 0S/360

>1000 %)
<1.0®



(1)
(2)

(3

Based on 2 CE's and 2 IOCE's--the latter at 80% rated speed.

From '"Final Report of IBM 9020 System Reliability Determination'
June 1967 for 325 flight, Al system.

From specifications: FAA-ER-NS-100-1

3.4 ARTS III MULTIPROCESSOR

The computer complex being developed for the ARTS III program
is a moderately sized multiprocessor consisting of relatively
conventional components. The computer is being developed in
stages, starting with a single processor configuration and
progressing toward a multiprocessor configuration composed of
a number of unlike elements. The basic computer is a develop-
ment by UNIVAC of its military 1230 computer. It is called
the ARTS III Input-Output Processor (IOP) in its current
manifestation.

In its final form, the system will have multiple IOP's, as
well as a number of units, specialized for computation,

called Central Processor Modules (CPM's). Core memory is
supplied in 16K modules. The maximum configuration is Iimited
by certain register lengths to eight processors (a mixture,
presumably, of CPM's and IOP's) and 16 memory modules. Input
and Output are done through 16 input and 16 output channels
built into the IOP.

To provide for continuity of operation and/or fail-safe,
fail-soft operation, the complex is connected to a Reconfigura-
tion and Fault Detection Unit (RFDU). This device can detect
and report on failures of units in the system and can
reconfigure the complex on command of the system executive.

The multiprocessor executive is, of course, a fundamental
element of the whole system, controlling as it does the
allocation of system resources to operating tasks within the
system.

We discuss each of the system elements in turn.

3.4.1 10P-processing function. The IOP is essentially a
general-purpose computer with both computational and
input-output capability. The latter will be discussed
in the next section.
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3.4.4

3.4.5

3.4.6

3.4.7

Memory Modules. The memory of the ARTS III system is
made up of modules of 16K 32-bit words each. Physically,
each module is made up of four 4096 word core stacks

with access time of 275 nanoseconds and read cycle time
of 650 nsec. Each word is divided into upper and lower
halves of 15 data bits plus one parity bit. The whole
word may be accessed or either the upper or lower half
separately. As many as 16 modules may be incorporated
into the ARTS III system, giving a total memory of

262K words.

Multiprocessor modifications. In order for the system
to be used in a reasonably efficient way as a multi-
processor, certain important hardware functions have
been added to the basic IOP/CPM system. These functions,
in general, provide for logical-physical unit identifica-
tions, memory read/write protection and provision for

an "executive call" function. The implementation takes
the form of additional control registers and additional
processor instructions. The so-called '""Relative Address
Allocation and Memory Protection' feature adds 110
nanoseconds to the effective memory cycle time when
enabled.

Multiprocessor additions. At least two additional
units of hardware must also be developed in order to
make the ARTS III multiprocessor system viable: a
Reconfiguration and Fault Detection Unit (RFDU) and a
Centralized Memory Access Module (CMA).

The RFDU is a dual-purpose device, as its name implies,
to which all hardware error indications are passed and
stored, and which can make and break connections between
memory units and processing units. When a fault has
been detected in a unit, the RFDU can interrupt a
non-faulted processor for action on the fault. This
processor then issues instructions to reconfigure the
system by cutting out the unit in error and bringing a
replacement unit on-line. If insufficient redundancy

is not available, the unit can only reduce the configura-
tion, leaving the adaptation to the executive program.

Multiprocessor executive. In order that the system
operate effectively, it must be under the control of a
supervisory, or Executive, program which controls
scheduling of jobs and allocation of facilities among

the jobs. Such a program is being written for the ARTS III
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system. It will provide for efficient processing within
the Air Traffic Control environment in its initial
version and will be developed to provide for automatic
fail-safe/fail-soft operation in later versions.
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ARTS III MULTIPROCESSOR

* *%
work length (bits) 30 30
instruction rate (MIPS) 1.2t 3,9t
failure rate MTBF (hours) N/A N/A
effective memory cycle time (nsec) 750 1000
processor cycle time (nsec) 750 750
add time (nsec) 1.5 1.750
multiply time (usec) 6.8 - 13.0 6.8 - 13.0
memory parity bits (number) 2 2
main memory size (1K words) 131K 262K
: (8 x 16K) (16 x 16K)
error detection in logic (yes or no) yes yes
error correction in logic (yes or no) yes yes
automatic instruction retry (yes or no) no no
automatic reconfiguration (yes or no) yes yes
hardware subsystem failure detection (yes or no) yes yes
compilers (type) macro assembler macro assembler
operating system (type) ARTS III executive ARTS III executive
mean up time (hours) >830% ‘ >830%
mean down time (hours) <0.5" <0.5%

* based on 2I0P, 8 memory module configuration
** based on 4 CPM, 4 IOP, 16 memory module configuration w/CMA
t+ rate for one processor + .8 (rate for one processor)
t++ 2(rate for one processor ) + 6 x .8(rate for one processor) (with memory
protection)
X requirement of FAA-TD/S-120-801 for "Simplex system"
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3.4.8 System Improvement. In order to measure, analyze, and
improve the total hardware and software aspects of the
ARTS III computer system, four measures have been taken
by UNIVAC. One is a Memory Queuing Model (MQM) written
in the discrete high-level simulation language employed
by the UNIVAC Simulation Package (USP) 2.0. This model
determines the queues and queue times existing at a
shared memory referenced by two IOP's, the main processors
in the present version of the ARTS III computer,
utilizing a distribution of referencing rates to the
shared memory. The model is composed of two IOP's and
two memory banks and has the capability of expanding to
3 I0P's. Peripheral (I/0) activities were not included
in this model. Instruction processing was considered
sufficiently valid for studying the queue characteristics
at the IOP-memory interface, An ATC Instruction Mix,

a modified Gibson Mix was used to exercise the MQM.

The second measure was a Hardware Characteristics Model
(HCM) that was used to investigate the ARTS I1II Data
Processing Subsystem (DPS) hardware performance and to
examine the effects of various DPS operational charac-
teristics, loads, and other aspects of its intended
environment. The model contains representations of an
10P, Memory, Data Acquisition Subsystem (DAS), Inter-
facility Communications Adapter (ICA), Magnetic Tape
Unit (MTU), Typewriter (TW), and Display Consoles. A
similar (as with the previous model) Gibson type mix of
instructions were used to exercise the HCM. Both models
are presently being converted to the UNIVAC System Simula-
tion Language (USSL) to increase run time economy and
overall utility.

The third endeavor at improving the system performance
was a manual method of analyzing the time spent in
performing subtasks. :

The fourth was an automation of the third. It is a
tracer program for the timing of functions in the programs.
The tracer counts the types of instructions, and records
where branches take place.
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3.5 CURRENT ATC EXECUTIVE SYSTEMS

The NAS and ARTS III air traffic control systems, as described
in Sections 3.3 and 3.4, are dependent for their correct
operation on the Executive Systems that have been designed

for them. In both cases, the actual air traffic control
operations will be conducted by a set of programs--called
variously applications subprogram, problem or work programs or,
simply, tasks--which will not be discussed in this section.
These are the programs which will do the radar data correla-
tion, tracking, display preparation, flight plan processing,
etc. The Executive Systems, on the other hand, have the
responsibility for scheduling of tasks, allocation of resources,
fault detection and handling and input/output control. In

a sense, then, the Executive is the software framework on
which the whole system is built.

There are a number of design principles which must be observed
in constructing an executive system, and more especially, a
multiprocessor executive system. In some systems, provision
is made in the design of the hardware for these principles,
so that the software design is relatively easy and system
performance is high. Other systems achieve the required
capabilities by adding circuitry to the hardware, retaining
the programming convenience but sacrificing speed. Finally,
it would be possible to program around most requirements
but the result would be a complex and slow executive and an
extremely limited system in terms of capability and capacity.

The inference to be drawn from these remarks is quite clear;
it is, indeed, not a new idea at all but has been a basic
tenet of disciples of good design practice for a long time.
It is that all aspects of the system must be developed
together to produce the most efficacious design. This 1is
particularly true when considering development of fourth-
generation systems because new technologies have blurred the
traditional lines between the provinces of hardware and soft-
ware. We will talk here about principles which have been
involved in present-day system design but which, from our
point in time, would seem to carry over to the newer systems
coming up.
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The two general classifications into which the principles

fall are protection and control. The system must have the
means to protect itself from damage or destruction by actions
of the software, either the application programs or the
executive, or by actions of the hardware, through a machine
fault or by the reaction to bad data from whatever source.
Furthermore, the system must be able to exercise control over
the actions of its component parts in order to maintain
efficient operation of the system as a whole. No one applica-
tion program, for instance, must be allowed to monopolize
resources needed periodically by other programs, or to prevent
the operation of some other function by suppressing the event
which triggers it.

The paragraphs below state--in rather general terms and
with no attempt to be rigorous--four "principles' and some
of the possible implementations of them.

1. There must be in the system at least two classes
of processes, or programs, of which one must consist of
the executive, alone. The executive (class) must be a
privileged class with sole and direct control over those
operations which change the '"status' of the system in certain

... fondamental ways. Typically, the instructions are included

" that control i) input/output operations, ii) changes to
the system configuration and iii) transfers of control
among independent programs.

The simplest implementation of this idea involves the
establishment of two states--say, supervisor and problem--
with a flag whose set condition indicates supervisor

state, for instance. Setting and clearing of the flag

may only be done from the supervisor state; any attempt

to do so from the problem state causes an identifiable
interrupt. Certain other instructions (I/0, etc. as
mentioned above) are also valid only when the flag is

set and attempts to execute them cause another identifiable
interrupt. One instruction must be available to the problem
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to allow transition back to the supervisor state: this instruc-
tion would set the flag and cause a special identifiable interrupt.
Following sections will describe the implementation in the

NAS and ARTS systems.

2. The executive must control the allocation of resources
among the programs in the problem class (es). The resources
in question include computations, storage and input/output
units. In general, the allocation should be done dynamically,
i.e., a) the executive operating both periodically and at the end
of each problem program schedules the problem programs as needed,
b) each program makes requests for additional resources as it
needs them and these requests are filled as the resources

become available.

In order that the program-controlled allocation be possible, a
number of hardware provisions must be made. The problem

Programs must be able to request resources, implying a special
supervisor call interrupt, possibly the one described above.

The executive must have a means for identifying the processor

on which it is operating so that it will know which processors

are available to assign to other programs. Finally, address trans-
lation registers must be provided so that the executive can

assign memory units as it wishes to the problem programs and

have correct addressing done automatically,

3. A mechanism must exist by which storage resources may
be protected against unwarranted uses. That is, when a region
of memory has been assigned to a particular program other programs
must be prevented from writing there or executing the code
there if these actions would interfere with the first program,
The establishment of read only and execute only states in
conjunction with the addressing hardware mentioned above can
provide this protection.

Some areas of storage will need to be accessed by two independent
Programs but not simultaneously. The uninterruptable TEST AND
SET instruction would allow a program to gain access to a data
table, say, while at the same time denying access to any other
program.

4. Transitions among programs must be done in an orderly
fashion under control of the executive. This implies that the
interrupt system must be controlled by the executive. One way
to implement this would be to have all interrupts lead directly
to the executive which will then decide on the basis of type
of interrupt and stored status and environment information where
to transfer control. Another possibility would be to allow
the executive to direct the interrupts to the appropriate
problem program on the basis of a priori information.
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The accompanying figure is a simplified diagram of the
system showing the major transfers of control. In the
following, we will discuss each nart of system as

shown, starting with the applications subprograms and
progressing through the various parts in the order in
which control is passed from one to another. By
proceeding in this way, the startup portion is described
last--a seeming anomoly. It is hoped, however, that the
presentation introduces concepts and ideas in a more
natural way than would a strictly chronological
development,

The closing sections will discuss those aspects of the
system design that are unique to or required by a
multiprocessor executive.

3.5.1.1 Applications Subprograms. This class of
program occurs in all systems, though under
various names: problem programs, functional
subprograms, operational programs, etc., It
consists of that group of programs which do
useful work on the data base of the system--
those that apply the transformations to the
input data to produce output data in its
prescribed form. In the NAS system, an applica-
tions subprogram gains control of a CE when
the monitor dispatcher executes a Load Program
Status Word (LPSW)whose instruction address
points to the program in question. How this
particular program was selected for operation
will be discussed below.

The applications subprograms operate in what is
called the '"problem state", while the executive
system operates in the ''supervisor state':

this means, essentially, that the former cannot
(1) issue input/output instructions or (2)
change the operational configuration or state
of the machine. This necessary restriction
imposes no hardship on the applications sub-
programs because indirect means are made
available to them to carry out any legitimate
operation of these kinds. The indirect means
referred to is the Supervisor Call (sve)
interrupt which may be triggered by any program
executing the SVC instruction with an eight-bit
code appended. Control is transferred to the
executive and the code passed along, thus
providing a mechanism for indicating which
service is being asked for of the nearly 30
that are provided. As with interruption schemes
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in general, the state of the machine at interrup-
tion is saved so that a return to that point is
possible; it is not necessary, however, as one
call, SCV FINIS, is used to signal the end of
operation of an applications program. Some of
the other calls request I/0 operations, status
indications, resource allocations and house-
keeping functions.

Transfers out of the applications programs also
occur on other interruptions which, with the
SVC interruption, are directed to the Monitor
Interrupt Processor. There are, in general,
two conditions which cause interruptions: on
the one hand, the interruption may signal the
occurrence of an event which, expected or not,
is within the normal purview of the system.
Events such as end of I/0 operation, input of
data from external source, and arithmetic over-
flow fall in this class. On the other hand, the
interruption may signal an error condition in
either the hardware or the program. Incorrect
parity detected during data transfer, attempts
to write in a protected area of storage and
illegal operation attempts are examples of this
condition.

In the case of interruptions such as those
involved with I/0 operations, the Interrupt
processor will return control to the subprogram
after taking the appropriate action. Interrup-
tions such as arithmetic overflow are the result
of conditions that can be handled by the sub-
program, so control is returned immediately to a
portion of the subprogram set up to handle the
situation. In the other cases, there is real
problem in the subprogram, or system, operation
which must be handled by the executive.

3.5.1.2 Monitor Interrupt Processor. The Monitor Interrupt
Processor, really a set of loosely-linked programs,
stands by ready to act upon the occurrence of any input/

output interruption or any "exceptional™ condition,
to use the IBM term. The general reaction of this
program to an interruption was described in the
section above; a more detailed look follows.
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3.5.1.2.1 SVC Interrupts. The SVC interrupts
come only from the applications sub-
programs and carry with them a code
indicating the monitor action
desired by the subprogram. Each
type of request is handled by a
separate routine designed to handle
that particular job. The SVC FINIS
routine, for instance, frees all
storage resources used by the
subprogram, cancels its execution
and transfers control to the
Monitor Dispatcher.

One group of SVC's is associated
with the allocation of storage
areas to the subprogram. Three
types of storage are defined: areas,
blocks and lines. An area is a
section of storage which contains
data or code which is used by two
or more subprograms; areas must

be protected against simultaneous
access by two subprograms to avoid
loss of data or use of erroneous
data. A block is a section of
storage to be used either as a
temporary work area by a subprogram
or a storage area for data put into
an I/0 or subprogram queue. A line
is a section of storage used to store
identification data used in trans-
ferring a block from one subprogram
to another through its queue or to
an I/0 device through its queue.

A subprogram gains control of
areas, blocks and lines by
executing the SVC LOCK, LEASE and
RESERV, respectively; it returns
them via the SVC UNLOCK, RELEAS
and CANCEL, respectively.

During its operation, a subprogram,
having a certain number of blocks

and lines assigned to it, can develop
its data in the blocks and transfer
control of them to other subprograms
and/or I/0 devices by setting up the
lines with the proper information
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3.5.1.2.,2

(block number and I/0 or subprogram
queue identification) and by then
executing the appropriate SVC. When
subprogram A passes a block to
subprogram B via a line, A executes
SVC SEND which causes B to be
initiated. B, in turn, executes
SVC ACCEPT. When B is finished
with the block, it executes SVC
DELETE, although it could pass the
block along with SVC RELAY. SEND
and RELAY may be used to pass data
to I/0 devices, as well.

A second group of SVC's is concerned
with passing input/output requests

to the Executive, which has sole
capability of initiating I/0 opera-
tions. These SVC's range from requests
for particular services (CONTRL asks
for execution of an indicated I/0
control operation on a specified device)
to requests for complete operations
(READ requests that a record be

read from the indicated device).

The third category of SVC's provides
for various services such as scheduling
of other subprograms, supplying of
status information, causing so-called
Legal and Analysis recording, etc.
Clearly, the response to each of these
is tailored to the particular request,
and clearly, other SVC's can be added
to the system with very little effort.

In general, the Interrupt Processor
will return control to the subprogram,
sometimes immediately and at other times
upon the occurrence of a prescribed
event, such as an I/0 operation.

Other Interrupts. Various other
conditions, none directly controlled
by the subprogram, cause control to be
transferred to the Interrupt Processor.
These are classified in the usual S/360
manner as program, input/output,
machine-check and external.
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The program interrupts are caused by
an occurrence of an exception of either
of two types; as mentioned above.

One type arises when the data being
handled by a program is faulty or
atypical. Typical of these faults
are the overflow and underflow excep-
tions which could occur if a word of
input data were affected by noise in
the transmission line, say. Then,

if there were no checking of the data
before use and the word was outside
the acceptable range, the exception
might occur when the word was used.

The program using the data should

be written in such a way that it can
deal with situations of this type, so
when this kind of exception occurs

and the interruption comes from an
applications subprogram, the interrupt
processor checks to see if a return was
requested. If so, control is returned
there.

On the other hand, if the interrup-
tion was from the Monitor Dispatcher,
or was from a subprogram with no
return requested or was of the second
type, transfer is made to the Error
Analysis routine, discussed below.
The second type of program exception
mentioned is that type which arises
by an error in the program or some
kind of machine malfunction. Typical
of these are attempts to execute
illegal instructions, attempts to
address a location outside of avail-
able memory and attempts by an applica-
tions subprogram to execute a
privileged instruction. One, the
SE-stopped exception, prevents

system hangup if, for some reason, a
storage element fails. All of these
conditions, when detected by the
Interrupt Processor, lead to a trans-
fer of control to the Error Analysis
program.
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Input/Output interruptions occur
either upon completion of a requested
operation or the occurrence of an
abnormal .condition connected with an
I/0 operation. In the first case,
the Interrupt Processor is able to
take appropriate action because of
prestored information and pre-
arranged queuing facilities where-
upon it transfers control to the
Monitor Dispatcher. 1In the second
case, the Interrupt Processor will,
in general, attempt to retry the I/0
operation, perhaps with a different
1/0 device of the same type as the
one giving trouble. If such attempts
are not possible--or are unsuccessful--
control will be passed to the Error
Analysis Monitor or to the Dispatcher,
depending on the exact nature of the
error.

Machine-check Interruptions are passed
to the Error Analysis Monitor for
disposition, while External Interrup-
tions, the remaining type, are handled
according to whether they are "normal"
or '"abnormal". Those whose origins
are in devices which use the interrupt
as an attention-getting device are
handled according to prearranged plans,
while those which arise from error
conditions such as On-Battery-Signal
are passed to the Error Analysis
Monitor for disposition.

3.5.1.3 Monitor Dispatcher. The Monitor Dispatcher is the

third part of the main path of control within the
NAS Executive. It is here that control resides
when the system is in a dormant state and through
which control passes when tasks, either new:or
interrupted, are to be scheduled. The Dispatcher
has access to tables which show which subprograms
are due to run at scheduled times, etc. There
are also tables of resource requirements for

each subprogram, as well as lists of available
resources in the system. Using all this informa-
tion, the Dispatcher attempts to keep the system
as a whole operating at maximum efficiency.
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3.5.1.4

3.5.1.5

Operational Error Analysis, Configuration Control,
Startup/Startover. When an error condition is

detected by the Monitor Interrupt Processor, it
will, as described above, transfer control to the
Error Analysis program, a set of subprograms
specialized for particular kinds of error
processing: machine-check analysis, I/0 error
analysis, reconfiguration, etc. In broad terms,
these programs will identify the source of the
error, record the conditions under which the
error took place and attempt recovery from the
error state,

In analyzing the error and arranging for recovery,
there are two questions to consider: (1) can

the system be reconfigured so that it retains

its normal processing capacity and (2) has the
data base remained essentially valid. Again

in broad terms, there are four cases: if the
answers are both yes, then the system can be
reconfigured quickly and automatically and

control passed to the Monitor Dispatcher, whence
system operation continues as before.

If the data base has not been affected by the
error condition but the processing power has been
reduced, then the Configuration Control can

arrange to drop non-essential items from the

task list and to process other tasks less
frequently than the normal rate. An algorithm

to schedule these service cuts in a rational

way is a part of the Configuration Control program.

If the data base, including the programs them-
selves, is damaged or suspect, then the system
must be restarted whether or not the processing
power is intact after reconfiguration. The
startup/startover program is able to reload

the system from its resident tape and reload the
environmental data from the tape on which such
data has been periodically recorded during
operation of the system. If the new configura-
tion is equivalent to the old one, recovery is
complete. If, however, the processing capacity
is lower, then an austere and slowed-down version
of the system is put into operation.

Multiprocessor Executive Features. The design of
the 9020 provides for two states in which the
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machine may run as regards "privilege': the
supervisor and the problem states. By making
the supervisor state be the province of the
Multiprocessor Monitor alone and requiring that
applications subprograms operate in the problem
state, the designers of the NAS system have
provided the Monitor with direct control over
I/0 operations; over the Program Status Word
(PSW), Preferential Storage Base Address
Register (PSBAR) and configuration control
registers and over direct read/write between
processors. By making sure that all new PSW's
after interrupts put the processor into the
supervisor state, they ensure that the Monitor
is given complete control of the interrupt
system.

The Supervisor Call (SVC) instruction causes a
special interrupt which carries with it a code
from the instance of the instruction; this
provides the problem program with a means for
transferring data to the Interrupt Processor.

By following pre-established conventions, the
application subprogram can use this means to
request storage facilities and I/O operations of
the Monitor, etc.

System deadlock is a condition in which two or
more processes are permanently prevented from
operating because each needs a resource being
held by the other (s). The occurrence of this
problem has been prevented in the NAS system by
implementing the following rule:

Given an ordered set of resources R; (1<i<N)
and a set of processes, system deadlock will be
prevented if the following holds: a process
may request control of a resource Ry only if it
controls no resource Rj (K<j<N).

In the NAS system, the resources in question
are the storage types: 1lines, blocks and
areas in that order. In practice, if a
program--either application subprogram or
monitor--needs storage of a type, it must
suitably release all units of that type and
higher. That is, to get an area requires that
the program UNLOCK all its present areas, to
get a block requires also that the program
RELEAS all its blocks and to get a line
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requires that the program CANCEL its lines as
well. This implies that the program must make
its initial requests in the order: 1lines,
block, areas.

The 9020 design provides two other features
which are used in the multiprocessor design.
Storage protection is provided by a storage key
associated with each block of 2048 bytes. This
key is compared with the key in the Program
Status Word when reading or writing operations
are performed; a mismatch causes an interrupt
and consequent return to the Monitor Interrupt
Processor.

Finally, an extensive diagnostic facility has
been provided, such that the Monitor can
execute a DIAGNOSE instruction and cause
control to pass to a selected routine stored in
Read-only Storage (ROS). These routines, or
"kernals', then cause selected registers to be
stored, others to be reset, etc., thereby
providing a quick, automatic reaction to a
fault situation.
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3.5.2 ARTS III Multiprocessor Monitor. The ARTS III system
will operate under a number of versions of its monitor,
or executive, system, each reflecting an increase in the
capability of the underlying computer complex. The
system is currently in the design and initial
implementation stage of the so-called Multi-IOP
Executive, a relatively limited program planned to operate
in a complex of two IOP's plus peripherals., The final
product—-the one to be discussed here—-is to be the Fail
Safe/Soft Executive which will operate in a complex of
central Processor Modules (CPM) and Input/Output Proces-
sors (IOP), both with multiprocessing expansion hardware.
Included also would be the Reconfiguration and Fault
Detection Unit (RFDU) and, presumably, the Centralized
Memory Access Module (CMA).

Since this system has not yet been written, one can only
describe the objectives of the design and the proposals
for implementation. It might be remarked here that the
designers of this system have not attempted to develop a
general-purpose operating system which could be used in
a wide range of environments, nor have they taken a
general-purpose 0S and adapted and modified it for the
ATC enviromment. Both of these approaches could lead to
valid systems and in some circunstances might lead to
superior systems.

In this case, however, the system to be developed will

be specialized in a number of ways to the ATC milieu:

this is the point in the design process where judicious
trade-offs must be made. There are two factors to balance;
one is the need to provide in the design enough flexibility
and adaptability to permit reasonable changes in and
additions to the requirements placed on the system.

It is clear that no system designed to meet today's
problems can exactly meet tomorrow's--the system designer
keeps this in mind.

On the other hand, generality is expensive. A system
that is ready for anything must, before reacting, find
out what is happening and then must choose from its
wide range of possible reactions, the one which fits.
The tests, the logic for choosing and the inventory of
reactions are all overhead, paid for by extra memory
requirements, slowed reaction time and reduced capacity.
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The ARTS-III system design is predicated on a cooperation
between operational task programs and the executive and
on a leanness in the executive design that are expected
to keep overhead relatively very low, The implication

is that this is a dedicated system—-dedicated in this
case to air traffic control--whose individual tasks will
be compatible with the system and will be compatibly

coded.

3.5.2.1

Operational Task Organization. Considerable
thought has been given to the organization of the
Operational Tasks within the system, for it is on
how well these tasks behave that the success of
the system as a whole depends.

It is assumed that the system operation is
cyclic, being tied to the basic scan rate of the
radar. It is further assumed this scan can be
divided into semi-independent 'cycles'", each

of which is made up of a number of tasks. The
tasks in each cycle are interconnected by a
predecessor and successor relationship, forming
a lattice structure. The analogy between this
structure and the familiar PERT chart is quite
apt.

In each cycle, certain tasks have no predecessor
tasks, or 'pretasks' as they are called; these
are the first ones to be operated in each cycle.
Other tasks have no successors or 'post-tasks',
which means that their completion signals the
end of the cycle. In between, the selection of
a task to be run is dependent on (1) its being a
post—task of some completed task--so that it gets
put into the queue--and (2) all of its pretasks
having been completed--so that it is eligible
for operation.

There is a special class of tasks called "pop-up"
tasks which are initiated asynchronously from

the regular tasks. These tasks are those whose
operation is so infrequent is to make scheduling
of them inefficient, or whose operation is
required at an unpredictable rate. Examples

might be hourly updates of weather conditions,
operator messages concerning changes to peripheral
units or the requirement to handle fault
indications.
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3.5.2.2

A cycle may be ended in one of two ways: by
request of a task or by being timed out by the
executive. In either case, the critical tasks
must be accomplished before the change of cycle.

Communication between tasks and executive is
carried out via an Executive Service Request
(ESR), a macro which has as its first word an
instruction which causes the instruction,
presumably a Return Jump, stored at a special
location in memory to be executed. The next two
words of the macro then tell what service is
being requested and pass parameter values along.
Various ESR macros will be defined, including
requests for I/0 services, error handling
services and normal exit,

A very important facet of the ARTS design is the
way in which input/output interrupts are
handled. 1In this system, the operational tasks,
themselves, will handle the interrupts. This
will have the very worthwhile effect of reducing
the overhead usually associated with this
activity--an overhead that has severely limited
the capability of many systems in the past,

But the price for this gain is a loss of control
by the executive: a task program handling an
input/output interrupt could cause loss of data
simply by taking too much time. The task
programs are constrained by mutual agreement to
return control after no more than 250 micro-
seconds. .

Interrupt Processor. Except for the interrupts
already mentioned--I/0 and ESR--all interrupts
are handled by a module of the executive called
the Interrupt Processor., The portions of the
module that handle the Intraprocessor Hardware
Error Interrupts (memory address parity, etc.)
and the Program Fault (illegal op code) Interrupt
reside in the NDRO memory of each processor. The
remaining portions reside in main memory and
consist of reentrant code so that a single
routine for each type of interrupt may be
accessed by all processors simultaneously.
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3.5.2.3

Scheduler. The Scheduler works with the two

classes of tasks mentioned above: the planned
and the pop-up tasks. The planned tasks are
assigned for operation according to elaborate
relationships to the other planned tasks, while
the pop-up tasks appear asynchronously. Some
tasks, as a matter of fact, can be classed as
both, having a planned task entry and pop-up task
entry; this allows them to be regularly

scheduled yet be available for quick reaction.

The planned tasks are listed in a table, called
the Post Task Pointer (PTP) table which is
continually scanned by the schedular; if a

task is listed in the table and an eligible
processor is available, the task is initiated,
Tasks are put into the table whenever all of
their pre-tasks are completed. That is, each
time a task is completed, a check is made of all
of its post~tasks; if all of the other pre-tasks
of one of these have been completed, the task is
eligible and is put into the PTP table.

Selection of post-tasks and checking of pre-tasks
is done via he Lattice Description Table (LDT).
This is a doubly-threaded list of the tasks,
pre-tasks and post-tasks. That is, for each
task there is an entry and part of this entry

is a list of pointers back to the table entrys
for the pre-tasks and part is a list of pointers
forward to the entrys for the post-tasks.
Included in each entry are indications of the
status of the task (not eligible, eligible,
complete) and of the pre- and post-tasks (not
complete, complete), which are updated by the
scheduler each time a task is completed.

Whenever the tasks of a lattice are all completed,
the cycle is complete and the scheduler must go

to the Cycle Table (CT) for the address of the
LDT corresponding to the next cycle.

Meantime, the scheduler must have been checking
the pop-up task list to see that none of this
category is eligible for execution. Each pop-up
task in the list has assigned to it an expected
start time and tasks are initiated according to
that time. The pop-up scan has a higher priority
than the planned task scan to ensure that no

task is late.
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3.5.2.4

Fail-safe/Fail-soft. The fail-safe and fail-
soft capabilities of the ARTS multiprocessor
executive will be added onto the operating
system after initial implementation. Considera-
tion has been given to these features in the
original design, so the addition should be
possible with minimal extra work. Moreover, the
original scheme required modular, expandable
design for the purpose of changing and expanding
the system as experience dictated. TFor this
reason, the fail-safe/soft capacities should
come easy.

There are two facets to the problem of operating
a system in a manner which ensures continuity:
detection of the error conditions and recovery
from them. Errors can be detected both by the
hardware and by the programs, The hardware
detected errors in the ARTS system are the
usual ones built into the IOP/CPM, which cause
interrupts to occur and control to pass to
pre-stored error routines. These error condi-
tions are also passed to the RFDU where they
are available to processors other than the one
involved with the error condition.

The executive program through a module called
the Device Verification Test (DVT) will attempt
to detect malfunctions in the various processors
and memories by executing test sequences of
instructions, writing and reading test patterns
of words, etc. The DVT will make sure that

all devices are tested by requiring that each
processor run tests periodically while monitoring
the occurrence of the tests on the other proces-
sors. I1f a processor is late, it can be
interrupted and forced to run the diagnosis.

Each of the operational tasks will be expected

to check the validity of the data it handles and
to pass any error indications on to the executive
via special ESRs. This policy is consistent
with the original design philosophy of requiring
the task programs to assume responsibility for
the proper operation of the system. It is worth
repeating that this imposes unusually stringent
requirements on the persons doing the detailed
design of the operational tasks: they must
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thoroughly understand the operation of the
executive and of the system as a whole.

Having detected a problem and determined its
identity and extent, the system must react to
it  a constructive way. The reaction to any
particular error will quite naturally depend
on the error, but the aim of the recovery
process is always to return the system as soon
as possible to as nearly complete capability
as possible,

A part of the ARTS executive has the responsibility
through the RDFU of reconfiguring the system
hardware to leave any failing units off-line.

Given sufficient redundant resources, this would
leave a complete configuration ready for the
recovery process. If less than a complete
configuration is available, a reduced system will
be reloaded, for a fail-soft recovery.

The recovery process can be conveniently
described, as it has elsewhere, as having three
parts: reloading, restoring and restarting.
The reloading is straightforward unless a
fail-soft load is called for., In that case,
the executive must choose, according to preset
criteria, which of the more critical tasks will
either fit in core or will not use more
processor capacity than is available.

The restoring of the data base is the next

part of the recovery process. It will be
facilitated in this system by having critical
data redundantly stored in core--assuming that
only one memory module would fail at one time,
one up—to-date copy of this critical data would
always be available.

Restart of the system would encompass entering
each task of the system in turn at a special
recovery entry point so that they could do
whatever housekeeping tasks might be required
before the scheduler resumes normal or fail-
soft operation of the system.
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3.5.2.5 Multiprocessor Executive Features. The ARTS-III
multiprocessor executive has been planned from
the start to be a "lean" system with much
reliance being placed on the cooperative behavior
of the operational tasks in the system. At the
same time, all of the necessary design features
have been provided for.

Firstly, there are the two classes of processes
in the system: the privileged executive and the
operational tasks. Although current documenta-
tion is not entirely clear on the point, certain
instructions implemented on the CPM will be
executable only when in the executive mode.
Since one of the design objectives of the
executive system was to make it operable on
either the CPM or IOP, it would seem that this,
and other, special facilities would have to be
implemented on both machines,

In any case, it appears that the executive will
have control of a number of registers which
control such things as enabling/disabling of
interrupts, steering of interrupts, relative
address assignments, memory lockout, etc.
Presumably, input/output instructions will also
be privileged, although this may be only by
convention: the task programs being constrained
to avoid 1/0 instructions but not being actually
prevented by hardware. This would naturally
introduce the risk of a machine error whereby an
instruction is mistakenly decoded as an I/0
instruction and executed as such.

As to the allocation of resources, the second
of the principles of multiprocessor executive
design, the ARTS executive will control the
allocation according to rather rigid pre-
arrangements. A scheduled task will be
assigned to a processor selected from a set
assigned at load time (and this set might
consist of some cases of a single unique processor).
Furthermore, all tasks as well as the data base,
both permanent and transient, will be assigned
to permanent locations in memory. This will
eliminate the executive coding and overhead
associated with dynamic allocation--undoubtedly
a great saving. Note that the decision to
proceed this way was made despite the existence
of relative addressing registers which could be
used to provide the dynamic storage assignments.
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The use of static allocation of storage requires
that a very good prediction of requirements be
made during the system design phase. While it
may be relatively easy to predict average loads
and to provide facilities to handle them, the
provisions for peak loads will have to be either
exorbitant (by providing enough storage to cover
the peak needs of all tasks simultaneously) or
likely to be exceeded at too high a rate. On
the other hand, the cooperative use of facilities
by a number of tasks would solve the dilemma

by supplying the peak needs of any program (but
not all simultaneously) while keeping total
requirements to a minimum.

One objective of the scheduler design and the
task structure is to introduce regularity into
the system operation--it is hoped that the tasks
will operate on a nearly fixed schedule. As

a result, control will certainly be retained

by the executive, but the system as a whole will
assume a certain rigidity such that its success
in operation will depend directly on the ability
of the system designers to predict the require-
ments placed on the system.

The third system principle involves protection
of resources from incursion or unauthorized use
by tasks to which they have not been assigned.
In the ARTS system, hardware has been provided
to allow read and write protection to storage
and instructions have been provided which allow
control of access by more than one processor

to common tables, Further control is provided
by the earlier mentioned requirement aof fixed
locations for all programs and tables and the
requirement that programs not modify themselves,
allowing them to exist in write-protected areas,
Lastly, a TEST AND SET instruction can be used
to synchronize access by two programs to on
data set.

Finally, the transition among programs which must
be allowed for in multiprocessor design is
provided in the ARTS system by the elaborate
scheduling algorithm described earlier, by
assigning all interrupts—except I/0-to the
executive and by provision of interrupt-steering
hardware which allow the executive to set logical-
physical relationships among the processors

for interrupt handling purposes.
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3.6 TEXAS INSTRUMENTS ADVANCED SCIENTIFIC COMPUTER (ASC)

3.6.1

General Description. This is a pipeline type uniprocessor
similar to the CDC 7600 but employing LSI or MSI inte-
grated circuits in the logic and memory areas. It is

rated at between 58 and 280 million instructions per
second. It is to be delivered early in 1971 to an internal
Texas Instruments customer, Geophysical Services Inc., for
the purpose of making seismic calculations.

The four main blocks of this computer are Central Memory,
Peripheral Processor, Central Processor,and Bulk Data
Storage and Channel.

The central memory associated with a single Memory Control
Unit consists of up to one million 32-bit words. The
memory is made up of modules of 2048 256-bit words and
during each memory cycle, 200 nsecs, a 256-bit word or

8 32-bit words are provided. Actually, the raw cycle

time is 160 nanoseconds which means one 32-bit word per

25 nanoseconds, and since 4 memory modules are interleaved,
this means one 32-bit word every 6.25 nanoseconds.

The Memory Control Unit provides for the simultaneous
operation of all memory modules and permits simultaneous
operation with the Central Processor, Peripheral Processor,
Bulk Storage-Data Channel; see below.

-

T *““ﬁ%BUIk Storage *la
{ﬁ Data Channel
| 5 .
Central '.—4 §—1p{ Central
Memory o lpProcessor
E »
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O |[4d—P
i Processor &

Central Memory is partitioned into 4K word-pages to
facilitate dynamic relocation. This is much better than
1K word-pages which is said to cause excessive page
turning, once per 10 to 100 instructions. Memory map
hardware (an associative memory application) is provided
at the MCU which maps the user's virtual memory page
number into an actual memory location for any or all of
the MCU memory ports as specified by the Peripheral
Processor. References by Central Processor or the BS Data
Channel to pages not allocated are treated as errors.
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3.6.

2

Each memory access port contains hardware for protecting
up to three segments of virtual memory. These segments
are defined by furnishing a start and finish addresses of
the protected areas. They may be designated as write
only, read only, or execute only. Each memory port is
set up this way.

The Central Processor (CP) employs pipelining techniques
for instruction processing as well as in the arithmetic
unit. Five different instructions can be in various
stages of completion at the same time. The advantages
gained by pipeline processing of the instruction stream
are dependent on the ability to handle two classes of
difficulties, branches and instruction dependencies.
Look-ahead hardware is provided so that the assembly
language programmer can put a command at the beginning
of a loop to anticipate a branch back command to return
to the beginning of the loop, rather than proceeding

to the next instruction after the branch instruction.
This feature will anticipate correctly the next octet
of instructions. On the last pass through the loop the
need for the following instruction octet will not be
recognized in time to use the look-ahead feature. The
ASC hardware further minimizes this class of problems
through the following provisions: branch-address
development at the highest possible pipe level, branch
condition determination at the highest possible level,
drastic reduction in loop structure of programs by using
automatic loops through the vector instructions. The
compiler is optimized to effectively use the advantages
afforded by the pipeline structure.

Central Processor. The Central Processor is made up of
three units, the Instruction Processing Unit (IPU) which
generates the effective address, the Memory Buffer Unit
(MBU) which fetches and stores operands, and the
Arithmetic Unit (AU) which executes the indicated
operation.

The arithmetic pipeline of the AU is a 64-bit parallel
operating unit which is split into 32-bit halves, similar
to CDC STAR. The least-significant (left) half can be
halved to do 16-bit operations, using the left most
16-bits. The same AU is used for fixed and floating-point
arithmetic. Fixed-point numbers are represented as

signed integers in 2's complement notation. Floating-
point numbers are in sign and magnitude with a base 16
exponent represented by an excess 64 binary number,
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To enable the programmer to handle two-dimensional
arrays (matrices) of data as well as one-dimensional
arrays (vectors), the vector processing hardware can be
instructed to iterate the basic operation in a way
analogous to three nested DO loops.

Below is the block diagram of the CP.
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Peripheral Processor Unit. The PPU provides communica-
tion with I/0 devices. Eight programs are time-shared
in the PPU (at the bit time of 65 ns) using 8 hardware
"Virtual Processors”, VP . The Operating System for the
prototype system has the complete monitor function in
the PPU. These monitoring functions include assignment
of system control parameters, allocation of VP units to
system program tasks, allocation of the CP to user
programs (steps), and the monitoring of the progress of
all programs including CP programs.

In addition to the eight virtual processors, the PPU
has an Arithmetic Unit (AU), a Read-Only Memory (ROM),
a file of Communication Registers (CRn) and a file of
Single-Word Buffers (SWB) which provides access to the
central memory. See below for a diagram showing their
relationships.
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3.6.3.1 Read-Only Memory. The ROM holds a pool of
programs and is accessed by reference from the
program counter. In the pool are primitive
operating system sub-programs and at least one
control program for each I/0 device connected
to the system. The ROM provides 32-bit
instructions to the VP units and it has an
access time of 20 ns. The ROM is organized into
256-word modules and is expandable up to 4096
words. Since the ROM contains the I/0 device
programs which include control functions as
well as data transfer functions, the motion of
mechanical devices can be controlled directly
by the program.

3.6.3.2 Virtual Processors. The 8 VP share PP elements.
Time is divided in cycles of 16 time slots
(bauds). Each baud (one bit period) is 65 ns.
One or more time slots can be assigned to a VP.
The time :lots are assigned by a master VP. The
source of instructions for a VP can either be
the ROM or the Central Memory.

Communication Registers. Sixty-four Communication
Registers (CR's) each containing 32 bits provide
control and data links to all peripheral equip-
ment. The CR's are addressable by VP's and

by the individual device to which each is
connected.

3.6.4 Data Channel Unit. The Data Channel Unit (DCU) brings
the high-speed mass data devices into central memory.
There is a 256-bit parallel transfer of data between the
DCU and central memory and a 32-bit parallel transfer
between devices and the DCU. The Peripheral Processor
controls the DCU through two of the communication
registers.

Each data channel interfaces with a disc controller
having a transfer rate of one-half million 32-bit words
per second. For the prototype ASC each data channel
will service two disc modules. A disc module stores

25 million 32-bit words. There is one read/write head
per track. The maximum access time is 32 ms. A
software optimization algorithm will be used to execute
disc requests in the order of their rotational position
on the disc rather than in the order in which they are
executed by the user. This will increase the efficiency
of disc channel usage and reduce the average access time.
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3.6.5 Hardware Modularity Features

3.6.5.1 Memory. Because of the asynchronous nature of
the memory control unit, high and low speed
memories can be mixed in the 22% word address
space. With four-way interleaving and 160 us
cycle time modules, a bandwidth of 200 X 10°
words per second is attained. Eight-way inter-
leaving is also possible.

3.6.5.2 Central Processor. The memory buffer unit can
be replaced by one which could support two to
four arithmetic units. Thus the equivalent
vector rate of 65 MIPS can be increased to
130 or 260 MIPS by modular expansion. No soft-
ware changes will arise,

Another expansion possibility is to use multiple
central processors, i.e., employ multiprocessing.
By using four central processors to access the
same memory control unit the processing rate
could be pushed to 1000 MIPS.

3.6.5.3 Peripheral Processors. Additional Peripheral
Processors can be added; however, the present
operating system cannot accommodate this change.
A newer 0.S. will be able to cope with it.

3.6.5.4 Mass Memory Systems. Since each Virtual Processor
can sustain an I/0 rate of 100,000 words per
second which exceeds the rate of current mass
memories, there is considerable room for
expansion. There should be no difficulty in
adapting new mass memories, e.g., the magnetic
bubble memory, when they become developed. One
interesting mass memory which TI is working on
is a holographic memory which stores 108 bits
per plate and has an access time of 1 microsecond
and a data transfer rate of .25 X 10® words per
second. A complete memory will store Hoel & plates
having a maximum access time of 10 seconds and a
total storage capacity of 1012 bits.

3.6.6 System Software

3.6.6.1 Operating System. The OS provides control,
scheduling and resource allocation for the
orderly flow of jobs through the computer system.
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As mentioned before, the 0S executes within the
Peripheral Processor. A job is entered through
on-line terminals or through an input device.

A Job Specification Language (JSL), a simple,
user-oriented language is used to define jobs.

A design goal of this language is the minimiza-
tion of the number of specifications required for
the user while permitting an escalation to more
details if a user wishes. JSL is used to specify
file transfer between peripheral devices and
central memory; file management services,
execution and the order of execution of CP
programs including compilations and assemblies,
and change of control within a job. The four
main components of the ASC operating system are
the Master Controller, Command Controller, Task
Controller, and Disc I/O Controller.

The Master Controller allocates all processors
including the CP. It furnishes the software
interface between the CP and the PPU. It
monitors all peripheral devices for attention.

It allocates processors to programs (but does not
do the scheduling) and it can terminate any
program under execution.

The Command Controller does the scheduling.
System resources such as disc space and central
memory requirements are scheduled and/or

reserved by the Command Controller. Gross
balancing of system resources and interpretation
of a user's job specification language is done

by the Command Controller. The Command Controller
operates interpretively on the job specification
which permits modification of system flow without
changing the external language. A user request,
a single job specification statement, such as
catalog a file, will require several actions (or
commands) by the operating system. Each JSL
statement contains one or more commands and each
command contains one or more tasks. In addition
to scheduling, the Command Controller schedules
commands within a job and passes the request for
the execution of the command to the Task
Controller.

The Task Controller assigns central memory for
code and activation records needed by tasks
scheduled by the Command Controller. It
manages all communication and transfer of

-99-



3.6.6.2

control between tasks. It informs the Command
Controller that a task has made a Disc I/O
request or when a sequence of tasks has
terminated. It preprocesses all Disc I/0
requests and monitors the Disc I/0 load.

The main function of the Disc I/0 Controller
is to manage the hardware channel controllers
and to optimize the order of the Disc I/0
requests.

Support Functions. The ASC Fortran Compiler
compiles programs for execution on the computer,
wvhich are written in an extension of the

IBM S/360 Fortran IV language.

The ASC Assembler is a meta-assembler, a

machine independent assembly program. The

input to the assembler consists of a definition
of the assenbly language, a definition of the
object language, and a program to be assembled
which is written in the defined assembly language,

The ASC File Management handles file cataloguing,
file security, library management and disc
management .

The ASC Link Editor is a system service program
(within the 0S) to 1link together the object
module of the language processors into modules
suitable for loading.
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TI ADVANCED SCIENTIFIC COMPUTER

word length (bits)
instruction rate (MIPS)
failure rate MTBF hours
off memicycle time (ns)
processor cycle time (ns)
add time (ns)

multiply time (ns)

memory parity bits (number)
main memory size

disc unit transfer rate
10® words/sec

disc module size
million words

max. disc access time (ms)
page size (woxds)

compilers
types

operating system
type

32

58 to 280
N/A
6.25*

50

2 15ns

up to IM words/Mem Control Unit
.5

100
34
4096

Fortran
Meta-assembler

TI ASC 0S _
uses JSL Job Specification Language

* each high-speed memory module puts out one 256-bit word every 200ns
and four interleaved modules then result in one 32-bit word/6.25 nsec.

Note: Although the TI ASC is a pipelined uniprocessor, it can be configured

as a multiprocessor.



3.7 THE GOODYEAR ASSOCIATIVE PROCESSOR

3.7.1

3.7.2

Introduction. The GAP, Goodyear Associative Processor,

has been called other things, e.g., STARAN IV and has

stood for a variety of hardware implementations for the

past two years. It is hard to say what really was. It is
known that in the summer of 1970, a demonstrator was
exhibited in Washington, D.C. and possibly elsewhere

which was composed of a 128 X 128 plated wire associative
array and a 32 X 32 semiconductor control memory, which

was fed by a paper tape program. This version made a

big impression on many on-lookers although in many respects,
it was and is a primitive machine, but it was the culmina-
tion of 10 years of work by a group of people at Goodyear
Aerospace Corporation. They had seen the limitations in the
conventional digital processor: that it operated sequentially,
requiring that the memory be addressed one location

at a time, and that only one operation could be performed on
one data stream at any instant of time.

The present GAP was arrived at after the design and
fabrication of an Associative Memory for the Rome Air
Development Center; actually the Goodyear Associative
Processor was developed for RADC also.

The clinching argument which favors associative processors
is that they expend constant processing time as the number
of repetitive operations is increased (to a finite limit)
whereas the conventional processor follows a linear slope
over increasing time, actually crossing the constant
level line of the associative processor after only a few
repetitive operations.

The Goodyear Associative Processor In The Knoxville
Experiment. The description of Goodyear Associative
Processor and Univac 1230 Computer Configuration and the
problems to be solved as outlined in the Univac Technical
Proposal of October 1970 have been altered.

An initial (60 day) contract was signed on December 18, 1970
obligating Goodyear to begin to supply the Associative
Processor which is to interfaced with the UNIVAC 1230 and
to supply the software to do the tracking and conflict
detection routines. In four months, the hardware is to

be shipped to Knoxville and two months of installation and
testing will be required. As a result of the close
schedule, conflict detection algorithms suggested by other
companies will not be included.
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The above is a block diagram of the Knoxville configura-
tion.

The upper block in the Goodyear Associative Processor is
128 X 128 plated wire associative memory which was part

of the demonstration processor that was exhibited during
the summer of 1970. The next block is a 32 X 32 semi-
conductor memory, formerly used as the control memory in
the summer demonstration and which was fed by a paper tape
program for operating the demonstrator AP, now ‘used as a
scratch pad memory for holding index registers and data.
The 32 X 32 memory is actually the upper section of the AP
control memory. The 8K X 32 core memory (900 nanosecond
memory cycle time) makes up the third major block in the
AP, It contains the programs for tracking and conflict
detection.

The way the associative processor and UNIVAC 1230 serial
processor work to handle air traffic is described below.
Target data returns from the Data Acquisition System are
stored in data buffer storage areas in the 1230 Main

Memory. As many as 60 targets (3 UNIVAC words per target)
can be stored in the main memory during a 4 second scan.
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entered into the AP 8K X 32 core memory; it takes 18
microseconds per target. At the conclusion.of this data
transfer, the AP is allowed to execute the tracking
algorithms, correlation, smoothing, and prediction.
Meanwhile the target data for the next sector is being
accunulated in a buffer storage area in the UNIVAC Main
Memory .

The Tracking Program in the AP 8K X 32 main memory is
composed of associative processor microcoded instructions.
At a later date some of the most used strings of micro-
code instructions, e.g., GREATER THAN will be implemented
in the AP control memory.

When the tracking program is concluded the UNIVAC 1230 is
signalled, and the results are transferred back to the

1230 main memory "result'" buffer area. The 1230 CPU

which has been monitoring the AP, decides whether there is
time left (before the next sector requires '"tracking'")

to perform conflict detection. This and a few other
executive decisions are really the only CPU functions the
1230 is to perform. For the most part, it functions as

an IOP, it inputs target data from the DAS and it outputs

to the displays (for which it does do coordinate conversions).
The AP on the other hand is permitted to do all the tracking
and conflict detection.

Later on it is expected that the AP will be called on to
do display output filtering, radar reinforced beacon
tracking, radar only tracking. -

.7.3 Associative Array Operation. The Goodyear 128 X 128
associative array is arranged into six fields and 9 individual
tag bits. Below is a chart of some of the associative
processor instructions.

Instructions Execution time (microseconds)
Exact match A+ 4)

Less than A(n + 4)
Greater than A o+ 4)
Maximum value 2(n + 2)
Minimum value 2(n + 2)

Next lower 3(n + 3)

Next higher 3(n + 3)

Add common .8(n + 1)

Add fields 1.1(n + 1) + .1
Multiply common .8(a + 3.2)
Multiply fields 1.1b(a + 2.7)

n,a,b = number of bits in pertinent data field
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It is to be noted that the execution time is independent
of the number of words but only on the number of bits in
the fields involved. Fields A, B, D, and E are 7 bits
each. Field C is 9 bits and field F is 13 bits. Tag

bits are designated for Between Limits, Next Higher, Next
Lower, Maximum, Exact Match, Less Than, Less Than or Equal,
Greater Than, and Greater Than or Equal.

To illustrate the operation, suppose the instruction was
given to tag all words in field A that are greater than

or equal to a certain supplied argument (and possibly a

mask of it). 1.4 microseconds after the instruction, mask
and argument was given the tags for "greater than or equal
to'" for all the words in field A which qualified would

be "set".  Subsequent read instructions could interrogate
each of these tagged words individually. A comparable

action in a serial processor (or conventional computer) would
take milliseconds. To describe another instruction, consider
Add Fields. Suppose the instruction was issued to add

field B to field C and store the results in field C. It
would take 8.9 microseconds to obtain the sums in all 128 words.
It would take at least a half millisecond in a serial
processor.

It is of course the ability to conduct search operations
(field-1limited in the Goodyear AP, but not in others)

over all the words (128 in the GAP) which make the associa-
tive processor an intriguing prospect in the future design
of computers. By virtue of the parallel organization,
speeds comparable to that of much larger serial machines
can be obtained. In addition, their reliability is greater
due largely to the fewer numbers of parts compared to

these large machines.

Following is a classification of processors.

Class Type Examples
Single instruction stream, Sequential CDC STAR, 7600 TI ASC
single data stream (pipeline) IBM 360/195
processor

Single instruction stream, Array Solomon machine
multiple data stream processes ILLIAC IV, PEPE

Associative processor
Multiple instruction stream, Multi- Holland machine
multiple data stream processor IBM 9020, ARTS III
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3.7.4 Associative Array Costs. The present cost for bipolar
associative memory chips (8 bits per chip, 16 bits per chip
sizes) runs between $1 to $2 per bit. These chips have
cycle times of 35 nsecs and the power dissipation is
30 milliwatts per bit. Thus, fast large systems having
cycle times of less than 70 nanoseconds can be contemplated.

The present cost for 128-bit MOS associative memory chips
with cycle times of 100 nanoseconds runs about $.50 per
bit--3 mi-liwatts per bit. This allows large system search
times of about 300 nanoseconds. The plated-wire associa-
tive memory cost runs somewhere between the MOS and bipolar
associative memory costs but the plated-wire AM configura-
tion is bit-serial, that is, it takes 100 nanoseconds per
bit during search.

There is no question that the semiconductor associative
memory chips which permit distributed logic and therefore
faster search operations will come down in price by a

large factor ( 10) in the next few years. Greater speed
and lower power dissipation will result with the newer
types of MOS memories, e.g., CMOS, Silicon-on-Sapphire, etc.
The associative array in the Knoxville experiment plus

the additional circuitry (but exclusive of 1230 computer)
costs in excess of §$2M,
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3.8 TWO NEW ASSOCIATIVE PROCESSORS

358l

The New Air Force Associative Processor. The Air Force

Rome Rome Air Development Center has been.-funding associative
processor development work since 1961. They have funded

the development of cryogenic, osephson device , ferro-
electric, electro optic, plated-wire, silicon-on-sapphire
semiconductor memory elements and the system development

of cryogenic and plated-wire types of associative

memories and processors.

In an AWAC study the feasibility of an associative
processor to process 1600 tracks and perform the IFF, radar
preprocessing, and display functions as well,was demon-
strated. The additional functions required only 57%

more of the associative processor's time; thus, collision
avoidance and flow control could also be added at little
extra expense. It is this concept of doing everything

in one computer, except possibly radar and beacon data
preprocessing which result in economics in transmission,
that makes the associative processor so attractive. The
usual MIP rate factor used to rate serial processors is
not adequate in defining the ability of the AP; although
"equivalent'" MIP figures are used to describe the AP.

The Naval Air Systems people have a similar but shorter
record of effort in the same area. They have also funded
a number of element and system efforts over an even more
varied scope than has the Air Force; speaking, of course,
in the development of associative processors.

After experiences with Goodyear in the fabrication of a
plated-wire bit-serial associative memory and a similarly
constructed associative processor, RADC decided to under-
take a new procurement effort at a new associative
processor. It is shortly expected that an RFP will be
issued for a design study phase (one year) for the hard-
ware and software specifications of the new associative
processor. High reliable programming techniques will

be part of the study. After this one year work-study
program, a new RFP will be announced for the fabrication
and software development. The winner of the first RFP
will be excluded from the second one. Following this is
a description of the new AF AP.
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The functional diagram of this processor is shown below.

Micro Field
Program| | Definition Central Control Arith.
Memory Registers Memory Unit Unit
Inter-
4 ¢ ¥ P ¢ by
Hi-speed Solid State '
Transfer Mass I1/0 Proc-
Buffer Memory essor .

The suggested size of the associative array is 4096 words
by 288 bits. The performance requirements are such as to
allow the plated-wire technology to compete. Less than
100 nsec are permitted for bit-slice searching and less
than 500 nsecs for bit serial addition. This means that
a search of 288 bits will be 28.8 microseconds and an
addition of two hdll words is 72 microseconds. Bit-slice
read and write are 100 and 300 nanoseconds.

Besides being content-addressable the words in the array
are capable of normal addressing. With each word in the
array will be a number of control bits or tags which

can be searched rapidly. These extra bits can be used

by the programmer and/or executive. They can be used

for array segmentation and memory protection. While this
array has many commendable features, it lacks the distribu-
tive logic search capability with its speed advantages.

In addition to the argument and mark registers is the
field definition registers which define fields in
multiple field operations.

The microprogram memory is the store which holds the
sequences of microinstructions which make the macro or
machine language instructions.

The high-speed buffer memory is an array of 4096 by

72 bits with capability of 4096 long bit slice read or
write in less than 50 nsecs. An ECL semiconductor
memory seems to be the solution to this memory.

The solid-state mass memory will probably be fabricated

MOS memory chips which currently afford 1024 bits per
chip at a 1 microsecond cycle time. Unfortunately, at
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3.8.2

this stage of technology, they are not beam-leaded, but
it is expected that they soon will be as well as an
increase in bits per chip to 2048.

For the purpose of control of the AP, a CPU is used. An
electrically alterable microprogram memory, a central
program memory, an arithmetic unit, logic and other
registers are included in the central processor unit.

An IOP, Input—-Output Processor, is used to handle
peripheral devices and communication interface.

Other features are that the machine should have multiple
address and operation breakpoints.

Honeywell Associative Processor. The preferred model of
Honeywell for an associative processor for the ATC problem is
a combination of a distributive logic associgtive memory, e.gy,

the 256 X 64 NASA Associative Memory, and a bit slice
random access memory which operates like the Goodyear
Associative Processor. With this implementation the
fast search capability of the associative memory, 500
nsecs, is coupled with the fast arithmetic capability of
the bit slice associative processors which is capable

of performing addition on a bit slice to bit slice basis
in 400 nsecs. A host computer is required with the
associative processor.

Two main types of associative processors.

exist. They are the distributed-logic type and bit-slice-
logic type. The distributed-logic type has logic at

every bit position while the bit-slice logic type has
logic only on a per-word basis. The following table

shows the differences of these two types.

Operations Distributed Logic Bit Slice .
Equality Search Parallel-By-Bit [Serial-By-Bit
Other Search Operations| Serial-By-Bit Serial-By-Bit
Arithmetic Operations Serial-By-Bit Serial-By-Bit
Word Write Parallel-By-Bit [Serial-By-Bit
Word Read Parallel-By-Bit |Serial-By-Bit

*This table appears in the report '"An Associative Processor
for Air Traffic Control" by Kenneth Thurber, Honeywell Systems
and Research Center, St. Paul, Minnesota.
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The distributed-logic associative processor has distinct
speed advantages over the bit-slice AP for the equality
search and read/write operations since operations are
performed simultaneously over all bits of every word. The
bit-slice AP will usually have the speed advantage for
"bit-slice" read and write operations and for arithmetic
operations.

Honeywell has combined the best features to form a
"hybrid" or '"combination" AP which will outperform

either of the two discussed types for a mixed problem
such as is encountered in air traffic control. Another
problem is also solved by the Honeywell AP approach,

i.e., host computer-associative processor incompatibility.
The usual arrangement for the Host Computer-Associative
Processor system is shown below.

Host HI/O I/0 ”Assoc1at1ve

Computer Interface [« Controller” Interface| |Processor

An interface exists between the AP Controller and the
host computer which is usually a general purpose
sequential computer and another exists between the
controller and the AP. The interface units are necessary
since the data is handled differently in the neighboring
units. For «ample, the bit-slice AP handles the bits

in a serial fashion whereas the host computer I/0 is
usually handled in word parallel.

The 3 main sections of the Honeywell Associative
Processor are the input-output interface, a microprogrammed
controller and the dual logic type processing element.

The interface contains registers, voltage level shifters,
routing logic and word formatters. The microprogrammed
controller receives instructions from the host computer
and instructs the processing element to execute them,

The controller has both a read-only memory and a random
access memory. The ROM holds microinstructions, e.g.,
less—-than-search and some fixed data. The RAM holds
sequences of microinstructions specially written for host
computer macroinstructions. This arrangement allows
flexibility as the host/AP interacting software can be
written independently, i.e., without constraints.
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The associative pocessing element is made up of a distribu-
tive-logic associative memory, an end-driven random

access memory, and a centrally shared core of adders and
results registers. The AM part has the advantage of reading
writing and searching words in parallel and the end-driven
RAM allows for the efficient bit serial (column) operations
that are typical of arithmetic instructions. Thus in
halves of AP words, bit-slice and distributed logic
operations take place. The RAM section is made of
conventional RAM chips. The AM section is made up of
conventional CAM chips. The central core is made up of
standard logic integrated circuits.

The following table gives the speeds for several funda-
mental associative processor instructions for the
distributed, bit-slice and combination types of associa-
tive processors. The combination (Honeywell Associative
Processor) column gives the speeds for each half of the
word, i.e., Part A speeds represent the speeds of the
AM, Part B speeds represent the speeds of the RAM.

The final table summarizes the speed comparisons of the

three types of associative processors using normalized
units for speeds, for 4 typical types of instructions,
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For the ATC application, Honeywell advocates the use of the
combination type associative processor with 512 words of
104 bits of distributed logic associative memory and

128 bits of bit slice type memory. One track would be
assigned to each 232 bit word. The controller would need
2000 words of read/write memory, and 500 words of read

only memory. The host computer would be the ARTS III
computer.

The three main subfunctions of tracking, namely, correla-
tion, correction, and prediction would be performed by
this AP.

Correlation includes getting the targets from the host,
performing correlation of range and azimuth of targets
against tracks stored in the associative processor,

tagging the target reports for prediction and/or correction
and storing the target report in the track file. All these
subfunctions are ideally suited for the AP. A queue of
targets accumulated in a subsector are to be sequentially
processed for correlation.

For correction, the four standard correction equations
are solved. These are

(D) Koy = (X, +oXgX)

@) Ty, = (1), +ec(TpY,),

(3 &), = &)

I

-1 + B/t(XR—Xp)n

) (dy = (T 4 + B/t(g-Y),

For all targets in the subsector the corrected positions
and velocities are calculated simultaneously. It was
assumed that coordinate transformations to the X,Y grid
were previously performed in the host computer.

The two linear prediction equations

(X)_ = (X)Jpq + (X, T

7~

'

A
|

D= Ty + d) T

1

are solved for all targets in a subsector simultaneously.
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The turning track equations

(x,)

o = N[Vsin(8#RN) - X_1 + X,

]

(Y, N[Vcos (6+RN) - &C] + Yp

n

will be used for predicting the position of aircraft
which are turning.

Conflict detection is proposed for the AP by doing
rectangular and circular area searches and solving the
law of cosines. A large rectangular area surrounding
an aircraft is first searched. Next, a semicircle,
inside the large rectangle is searched for other air-
craft. This search is for eventual hazards. Then, a
small square area is searched. Next, a small square

is searched before an inner circle of danger is searched.
A more efficient use of the AP is made when rectangular
area searches are made before circular ones. Finally,
the law of cosines relationship is solved for aircraft
contained in the inner circle,

It is expected that the AP transmits to the host computer
the data to be displayed. The host computer performs the
filtering of data to the proper displays. However,

the host computer is to be aided by the AP which

uniquely codes each target to be displayed.

To fabricate an AP such as the Honeywell AP, the T.I.
4000JC 128-bit content—-addressable memory chip can be
used. It costs 15¢ per bit when purchased in 250 unit
quantities (500 are needed for the AM considered here).
Sense amplifiers (104 of them) are also needed for the
AM and this along with other circuitry should push the
price per bit closer to 20¢ per bit. The TMS 4000JC
is a high-speed MOS LSI circuit. It has a settling time
of 50ns, interrogate access time of 80 nsecs, a read
access time of 60nx, and a minimum write time of

60 nsecs.

Other CAM chips, mostly bipolar, are presently being
produced. Although they are faster, they are fewer bits

per package and as a result are more expensive. The

Intel 3104 is a 16-bit CAM which is quite fast. The search-
to-match output delay is 25ns and the address-to-output
delay is 25ns. No sense amplifiers are needed with the
bipolar CAM's.
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3.9

PEPE, PARALLEL ELEMENT PROCESSING ENSEMBLE

The PEPE computer is a global, highly parallel machine made up
of an unstructured ensemble of processing elements under common
control for real-time track data processing in advanced radar
systems. Each processing element contains arithmetic logic, a
random access data memory, and a correlator. Associative
techniques are employed both on data input and result retrieval.

3.9.1 Introduction. The technique involved in this novel
machine is performance gain through the organization of
the components and their functions rather than through
increased performance of the components. Instead, a
compromise is reached by sacrificing the ultimate in
componentry for somewhat less, to increase reliability
and make economic gains.

In the PEPE technique, hardware for computation and
scratch pad storage is dedicated to each track, aithough
spares may be substituted at any time and initially any
element may be assigned to any track. The principal

gain is that a central control actuates a group of
processors simultaneously and causes similar computations
to proceed in parallel. This works well for vector or
matrix computations when all of the elements are working,
but as soon as some are not being used, then the efficiency
is lowered. The justification for the use of PEPE is the
short time interval constraint when a lot of computation
must be performed. The entire data base is accessible

in parallel through content-addressable memories. The
output as well as element inputs are effected by associa-
tive means. This parallel machine may be classified as

a one-dimensional array processor, which uses associative
memories and is managed by a host computer.

3.9.2 Machine Organization. The following figure shows the
structure of PEPE. The present prototype has N=16 elements.

~
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Figure 12. Ensemble Organization

The function of the host computer is to perform the
program sequence control. It is like a program in main
memory acting on a control memory. The host computer does
perform other duties; those for which it is best suited,
e.g., sequential portions of the programs being processed.

The ensemble control unit decodes the instructions as

they are received and produces the detailed gating
necessary for the ensemble. Ensemble control is divided
into two parts, correlation control and processing control.
For correlation control, a small memory for the internal
storage of correlation programs is included. Actually,

the arithmetic unit and the correlator share the use of
this memory. Only a minimum of control circuitry is

found in the processing element. ’

The arithmetic unit performs parallel floating point

operations on variable length fields. The following
diagram shows the ingredients of the arithmetic unit.
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Figure 13. Clement Arithmetic Unit

The A register is the accumulator, the B is the memory
operand register and M is the register used in multi-
plication and division. All are 32 bits long. The
shift switch is capable of shifting a 32-bit input from
0 to 31 bits, right or left with 6 logical nodes of
delay. The control section of the arithmetic unit has an
8-bit T register which can be loaded from memory or set
as a result of tests performed on the contents of the
accumulator. This register holds the activity state of
the element since its contents are compared with that
requested by common control. If the activity state
shown by T matches the activity specification of common
control then the control flip-flop EA is made active and
the element is allowed to execute the instructiobn.

The data memory is 512 words long and has 32 bits per

word. It is fabricated from the Texas Instrument Company's
256~bit MOS chip, TMS 4003JR. The memory cycle time for
the data memory is less than 500 nanoseconds. 8

Presently, the 8 X 32 plus 8 tag-bits associative memory
of the correlation unit is made up of Texas Instrument's
7400 series of gates and flip-flops but it is expected
that they will soon be converted to using the TI 128 bit
(16 X 8) content addressable memory, TMS 4003JC.
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There is an effort underway to rebuild PEPE using MSI
chips. The present average instruction time for the
correlation unit is 400 nsec. This may be increased
slightly.

The arithmetic unit is presently fabricated from the
7400 series of logic devices. The present average
instruction time for it is 1.7 microseconds. It is
expected that this unit will also be converted to MSI.

Operands are stored in the data memory as shown below.

v N exe|  rracrion NN
AN NN

A descriptor specifies w, the word address, m the bit
position of the most significant bit, p the bit position
of the boundary between exponent and fraction, actually
the sign-bit position, and the bit position of the least
significant bit. The exponent may be O to 8 bits long
and the fraction 0 to 24 bits long including the sign.
When read into the arithmetic unit ‘the operand is
automatically aligned and converted to an 8-bit

exponent and a 24-bit fraction.

In selecting one of N outputs from N accumulators, a
search of N accumulators can show agreement over a
particular field for over many of the N. In order to
resolve multiple response, a Lewin generator network is
used.

The present host computer is the 360/65. The MSI 16
element PEPE is rated at 16 MIPS, and expected to cost
16 X $3000 exclusive of the host computer and the control

unit.
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3.10

CDC STAR-100

The Control Data STAR~100 is a pipeline processor capable of
processing data at a 100 MIPS rate. It uses conventional
integrated circuitry. The logic organization is designed to
solve a wide variety of application programs. Speed is
obtained by using pipelined arithmetic units and by organizing
a large, slow, core memory to provide multiple consecutive
words concurrently.

The core memory comes in 524K or 1,048K 64-bit words and is
organized into 32 interleaved banks, each with a memory cycle
time of 1.28 microseconds. Each memory bank supplies 8§
64-bit words every 40 nanoseconds throughout the 1.28 micro-
seconds. This results in a 200 million 64-bit words per
second transfer between memory and processor. The STAR,
String Array Processor, has a 4 trillion word virtual memory.

There is also tremendous power in the instruction repertoire.
They can reorder files using 2 machine instructions. They
employ three address logic. If one used all improper streaming
of instructions, the 100 MIPS rate would dwindle down to 6.

A programmer addressable (different from a cache) hardware
register of 256 words X 64 bits is available at memory cycle
times of 40 nanoseconds.

MECL II logic is used whereas the CDC 7600 used discrete
transistor circuits. For the register files, 32-bit MSI
register chips are used.

The following diagram of the logical organization is not

untypical of most computers; the power of STAR resides
within the major components.
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3.10.1 STAR Central Processor. The STAR Central Processor Unit
(CPU) is made up of the Storage Access Control (SAC),
Stream, Floating Point Arithmetic Units (2), and the
String sections as shown in the basic central processor
diagram.

The Storage Access Control (SAC) unit controls the
data transfers to and from the Magnetic Core Storage
(MCS) and performs virtual address comparison and
translation. It also generates parity bits for write
data and checks parity on read data. SAC connects MCS
to the Stream Unit, I/0 Channels and the Direct

Access Channel. Upon parity fault detection SAC stores
the type of parity fault and the absolute address of
the data causing the fault in a register which can be
read by the Maintenance Station. In the case of a
Stream instruction parity fault the virtual address of
the fault is given by the Current Instruction Address
register and means are available for obtaining the
absolute address.

The typesof parity faults are:

1. Access Instruction

2. Stream Instruction

3. CPU

4. Search

5. Exchange

6. I/0 or Direct Access Channel

Page sizes are 65,536 and 512 for 64-bit words. The
SAC unit offers storage protection in the form of

locks and keys. Each page associative word contains a
12-bit lock code. Each job is assigned four 12-bit
keys by monitor. If a virtual address matches the
corresponding portion of the associative word, the

four keys of the job are compared to the lock. There
must be a match for a storage reference to be completed.

In addition to the key-lock protection feature, each

of the four (job) keys is associated with a 4-bit

usage lockout code. This code can lock out CPU write
operations, CPU read operations, and/or CPU instruc-
tion references. When a key matches the lock but the
type of usage is inhibited by the usage lockout code,
an access interrupt takes place to the Monitor program
which @an restrict page access for a job to a particular
type of reference.
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The Stream unit provides control in the computer.
The functions it performs are:

1. Initiates all central storage reference
requests for instructions and operands

2. Translates instructions and transmits control
signals to the arithmetic units

3. Provides addressing for all source operands
and arithmetic results

4. Buffers and positions all operands and
arithmetic results between central storage
and the arithmetic units.

In the Stream unit resides the 256 X 64 register
storage which serves as the lower 256 words of central
storage as well as for other functions. The Stream
unit interfaces with Storage Access Control (SAf),
Floating Point Units 1 and 2, String Unit and the
Maintenance Station.

Part of the Stream unit is Instruction Control which
receives all instructions from central storage or

the register file (which is part of central storage)
although it is located within the Stream unit. Part
of Imstruction Control is a l6-word, 128-bit Instruc-
tion stack into which swords (8 words) of instructions
are deposited from central storage. The instructions
are decoded into a sequence of micro instructions
which go along with the operands and partial results
through the pipeline. The entire sequence of micro
instructions is repeated for many operands in the case
of array instructions. .

A pair of parallel independent arithmetic (pipeline)
units make up the floating point arithmetic section

of STAR. Pipe 1 is used for register add, register
subtract, register multiply and all vector arithmetic
instructions. Pipe 2 is used for register divide,
register square root and all vector instructions. The
speed of these units is given by the following chart.

32-Bit Results Floating~Point Operations 64-Bit Results

100 X 10%/sec Add/subtract 50 X 108/sec
100 X 10%/sec Multiply 25 X 10%/sec
50 X 10%/sec Divide/square root 12.5 X 10%/sec
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3.10.2

3.10.3

Another pipeline is the String Arithmetic Unit which

is used to perform all of the bit logical and character
string operations required in the execution of
comprehensive data processing jobs. The String Unit
processes all of the decimal arithmetic.

STAR Reliability. The STAR computer contains special

hardware monitoring features that facilitate the
monitoring of the system operation by the Maintenance
Station. There are monitors of temperature, dewpoint
and power, and also counters that count special
operational activities in the CPU. The expected
MTBF is 50 hours, the expected MDT is 1 hour

which will be (it is hoped) reduced in the course of
time to 15 minutes. By using a smaller version of
STAR, EM-1B in a duplex configuration (see the
diagram on the DUAL STAR SYSTEM) a fail-soft mode

can be attained for an additional 20Z expenditure.

Summary of STAR Capability and Cost. The STAR-100

is an advanced 3rd generation computer based on the
use of ECL integrated circuits and system organization
to give a 100 MIPS processing rate with 3 address
logic and a powerful assortment of new instructions
and appropriate software. The machine costs 7 million
dollars. If the machine is operated (programmed)
properly, it can achieve this high rate, 100 MIPS,

If it is not, it can drop down to 7 MIPS. Somewhere
in between lies the expected performance., The best
gauge is low well it performs on a certain class of
problems, e.g., air-traffic control, or the tracking
of reentry vehicles. A comparative test is being
conducted in the latter problem; this should furnish

"an indication of how good STAR-100 really is.
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3.11 ILLIAC IV

The ILLIAC IV is a SOLOMON-type array or parallel processor.

It was to have consisted of 256 processing elements arranged

in 4 arrays of 64 PE's each designed to give a 1,000 MIPS
processing rate. After 5 years and 30 million dollars,
including some technological mishaps, it still is not completed
even though the configuration has shrunk to 1 array of 64
processing elements. There was a switch from thin-film
memories to semiconductor memories for the individual PEM's,
Processing Element Memories, which are dedicated 2048 X 64
data memories with memory cycle times of 200 nanoseconds.

ARPA is continuing to fund the development of ILLIAC IV which
is expected to be completed by early 1972. At that time, it

will be shipped to NASA-Ames Research Center, Moffett Field,

California where NASA will house, operate and maintain it in

return for 187 of the computing time.

From the SOLOMON Computer concept the four principal features,
namely

1. A single control unit, or single instruction stream
sequences, a large array of arithmetic units
processing many data streams

2. The central control supplies memory addresses to all
units

3. Local control is achieved only by element enable or
disable £ the execution of common instructions

4. Nearest neighbor interchange of common instructions
processing elements

were incorporated in the ILLIAC IV. The ILLIAC IV can perform
an add operation (or more exactly 64 add operations) in

240 nanoseconds and multiply in 400 nanoseconds. The following
block diagram shows the present configuration of the ILLIAC 1V
computer.

-128-



INSTRUCTIONS CONTROL

PN
LA e

f— ===
N
.

E—

N
ol
S
——
S

PE) PE2 fap e v sl PEi [ws v e =l PEGS

MEMORY MEMORY MEMORY MEMORY
2

3.11.1 ILLIAC IV Processing Element. The PE is a four 64-bit
register arithmetic unit. There is an A register and
a B register to hold operands for arithmetic and
logical operations with the A register serving as an
accumulator., An S register is used to provide
temporary storage and avoid repeated accesses to memory.
The R register is the multiplicand register and also is
used for transfer of data among the PE's. An adder/
multiplier (MSG, PAT, CPA), a logic unit (LOG), and a
barrel switch (BSW), which are used for arithmetic,
Boolean and shifting functions, are also parts of the
Processing Element, A 16-bit index register (RGX)
and an adder (ADA) are used for memory address formula-
tion. An 8-bit mode register (RGM) is used to hold
the result of tests. Two bits of the mode register
(RGM) control the enabling and disabling of all
instructions; one of these is active only in the 32-bit
precision mode and controls instruction execution on
the second operand. Two other bits are set whenever
an arithmetic fault, such as overflow or underflow,
occurs. The fault bits of all the PE's are continuously
monitored by the main Control Unit (CU) to detect a
fault condition and initiate a CU trap.

Each PE has a 64-bit wide routing path to 4 of its
neighbors (+1, +8).

The PE's operate in single 64-bit word lengths, dual
32-bit word lengths, or eight 8-bit word lengths,
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The following block diagram shows the ingredients of
a Processing Element.
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3.11.2 TILLIAC IV Control. A common control unit (CU)
decodes the instructions and generates control signals
for all the processing elements. By eliminating control
within each PE, a saving is attained.

An index register and address adder is retained with
each PE so that the final operand address for the ith
processing element is determined as follows:

a; = a+(b)ﬂbi)
where a is the base address specified in the instruct,
(b) is the content of the central index register, and
(ci) is the content of the local index register. This
degree of freedom in operand addressing is quite effec-
tive in landling row and column operations of matrices
and other multidimensional data structures.

The control unit (CU) has the following five functions:

1. To control and decode the 32-bit instruction
streams.

2. To generate the control pulses transmitted
to the processing elements for instruction
execution.

3. To generate and broadcast those components of
memory addresses which are common to all
processors.

4, To manipulate and broadcast data words
common to the calculations of all the processors.

5. To receive and process trap signals arising
from arithmetic faults in the processors,
from internal I/0 operations, and from the
B6500, host computer.

The CU has two 64 X 64 fast access buffers, one
associatively addressed which holds current and pending
instructions (PLA), and the other a local data buffer (LDB).
There are four 64-bit accumulator registers (CAR) which

are CU internal transfer registers and hold central

address indexing information and active data for

logical manfjpulation or broadcasting. The CU arithmetic
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unit (CULOG) performs addition, subtraction, and
logical operations. See the following diagram.
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Countrol-unit block diagram,

All instructions are 32 bits in length and are of two
types: internal CU instructions, e,g., indexing,
jumps and PE instructions which decode within the CU -
and are transmitted to all the PE's. Instructions are
entered into the PLA, sixteen at a time into 8 words
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of the PLA. They are individually extracted from there
and are sent to the advanced instruction station
(ADVAST) which decodes them and executes those local

to the CU. In the case of the PE instructions, the
ADVAST constructs the necessary address or data operands
and places them in the Final Queue Registers (FINQ)

to await transmission to the PE's., Part way through
the 16 instructions, an inquiry is made to ascertain
whether an additional block of 16 instructions is in
the PLA. 1If it is not, then a control is enacted

for them. The PLA holds 128 instructions which is
sufficient to hold the inner loop of many programs.

The control unit communicates with the PE's one of two
ways. It can broadcast a 64-bit word simultaneously
to all PE's; or it can broadcast a 64-bit word with
one bit going to each of 64 processors. Masking can
be accomplished by enabling or disabling the PE's.

The control unit can fetch words from any PE, one word
at a time or in blocks of 8 contiguous 64-bit words.

The transfer of information from the control unit to
the processors is through the microsequence generator;
see the simplified block diagram below.

“—64 PITS—= «—64 BITS—>

[
- .
O °
. 5 :
FROMPE ] PROGRAM 64 LOCAL FROM PE )
MEMORY ~ | LOOK AHEAD WORDS MEMORY ﬁ
[ ]
. .
bl .
1

INSTRUCTION | o] FIXED POINT
DECODE _ | : " ARITHMETKC
MICROSEQUENCE
GENERATOR

TYTTY
Y0 PE's

. Control unit.
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A PE can be disabled on command from the control unit
or as the result of a local test. Once turned off, a
PE cannot turn itself back on, but must await a
command from the control unit.

Interrupts are provided to handle the host computer
control signals and a variety of CU faults, e.g.,
undefined instructions, instruction parity error, etc.
Arithmetic overflow and underflow in any of the processing
elements is detected and produces a trap. The interrupt
hardware consists of a base interrupt address register
(BIAR) which is dedicated as a pointer to array storage
into which status information is transferred. At the
time of an interrupt the contents of the program counter
and other status information and contents of CAR O are
stored in the block pointed to by the BIAR. CAR O is
set to contain the block address used by BIAR so that
subsequent register saving may be programmed.

Interrupt returns are obtained by a special instruc—
tion which reloads the previous status word and CAR O
and clears the interrupt.

Interrupts are enabled through a mask register. During
the interrupt processing, all new interrupts are
ignored, although their presence is flagged in the
interrupt state word.

3.11.3 ILLIAC IV Maintainability. The modularity is inherent
since the ILLIAC IV is a parallel processor; this
simplifies the storage of spare parts and also the
diagnosis of faults as the faults can be isolated by
virtue of the parallel paths, and natural duplication.
By replacing total faulty processing elements and
repairing them off-line, the system MDT can be held
down to 15 minutes. The time to repair a subsystem
may take much longer and a queue could develop which
would affect the system performance. Confidence and
diagnostic routines will be necessary for insuring
long up times and short down times. The diagnostic
routine can be designed simply to find the faulty
subsystem. Off-computer routines, either hardware or
software, can be used to isolate the fault in the sub-
system. :
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3.12 SOME ADVANCED THIRD-GENERATION COMPUTER SYSTEMS

A number of computer systems have been developed in the last few years
which represent the third-generation of equipment in its more advanced
state. They introduce features which will be common place in future

large-scale systems, such as those described in the preceding sections.

The IBM System/370 is a development of the 360 family that uses both
microprogramming of part of its control and the so-called "cache

memory" concept. The UNIVAC 1110 system represents a conscious attempt

to provide a multiprocessor system as a concept development rather than

an add-on feature., The CDC 7600 is an attempt to squeeze from an instruc-
tion stream all the parallelism it possesses and to use this parallelism
to increase the processing speed.

3.12.1 1IBM System/370. The System/370 from IBM is a 360-compatible
family of computers that uses some of the latest system techniques to
derive high-speed performance and reliability. The largest model
announced se far is model 165, a replacement for the 360/65 and 75.

The 360-compatibility is in the upward direction, meaning that most 360
programs run on the 370 but not necessarily vice versa. From a program-
ming point of view, the differences consist of a few new instructions,
possibly more storage and a few minor changes and additionms.

The major changes to the system was in the circuitry of the central
processor unit and in the storage structure. The CPU is divided into two
parts, which can operate simultaneously on different instructions. The
instruction unit, controlled by logic circuits, ''prefetches instructions
(maintaining them in sequence), decodes instructions, calculates addresses,
prefetches instruction operands, and makes estimates of the success of
conditional branches". [ 1, p.8]. A number of instructions will be in
process at one time in this unit. Interestingly, when a conditional
branch is encountered, instructions along both legs of the branch are
fetched to minimize delay after the condition is determined. .
The execution unit is controlled by a microprogram in a control store,
most of which is read-only storage (ROS) but some of which is writable
from a special magnetic disk cartridge. The unit can execute one instruc-
tion per 80 nanosecond cycle. Both the instruction and execution units
make use of general-purpose and floating-point registers implemented in
local storage with a read/write cycle time of 80 nanoseconds.

A two-level storage structure has been provided which significantly
affects the performance of the system. An 8K buffer storage (with a 16K
option) with an 80 nanosecond cycle time is interposed between the
processing units and the main storage, which has a 2 microsecond cycle
time with four-way interleaving of double words. With this arrangement,
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a CPU fetch from the buffer takes 160 nanoseconds, or 2 cycles, for 8
bytes, while a buffer fetch from the processor storage takes 1.44 micro-
seconds, or 18 cycles, for 32 bytes. This latter fetch may be repeated
once each two microseconds.

Buffer storage is divided into 32 byte blocks in a 4 X 64 block array,
Processor storage is also divided logically, in an array of 512 X 64
blocks. The 64-block dimensions, called columns, are identified together
in the wo storage areas and data from a column in processor storage is
moved into the same column in buffer storage only. Thus, there are

512 blocks in one competing, in a sense, for 4 blocks in the other.

The storage control unit keeps enough information so that when a new
block is to be stored in the buffer, it replaces the block whose time-
since-last-reference is the greatest.

The net effect of the various strategems is to keep the processing units
operating at a high rate while allowing the use of relatively slower

main memory. The actual processing speed of the System/370 is difficult
to state, since in common with other new machines, its performance is
strongly dependent on the actual instruction sequence and, to some degree,
on the data being processed.

3.12.2 UNIVAC 1110. Based on the UNIVAC 1106 and 1108, the 1110 is a
medium to large-scale computer system especially developed as a multi-
processor. The system is composed of varying numbers of seven components
Command/Arithmetic Units (cam, Input/Output Access Units (IOAU), System
Console, System Partitioning Unit (SPU) , Main Storage, Extended Storage
and peripheral subsystems. The maximum configuration consists of

4 CAUs, 4 I0AUs, 262K words of main storage, 1048K words of Extended
Storage—-with 8 Multiple Access Interfaces (MAI), 4 System Consoles

and one SPU.

The Command/Arithmetic Unit of the 1110 is organized in separate components
for address generation, jump condition testing, arithmetic operation and
operand storage. As a result of this segmentation, it is possible to

have four instructions stacked in various phases of execution, giving an
effective instruction time of 300 nanoseconds under favorable circum-
stances. Multiple index registers and accumulaters are available which
allow a properly organized program to minimize storage references,

thereby contributing to the overall efficiency of the system.

The whole system was conceived with two thoughts in mind: to make it
compatible with the 1106 and 1108 and to make it an effective multiprocessor.
The former was taken care of by using the same instruction set, except

for the addition of character/byte manipulation and certain control
instructions. That the latter was achieved is evident from the fact that
only multiprocessor configurations are offered, ranging from the two CAU,

one IOAU minimum to the mximum mentioned above.
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The 1110 system basically supplies increased computing power by supplying
additional computing units.

3.12.3 CDC 7600. The CDC 7600 is one of the largest and fastest computers
in use today; it derives its power and speed to a large degree from the
organization of its Central Processing Unit (CPU). This unit is made of
four interconnected sections which operate together on a 27.5 nanosecond

clock period. The sections and their communications links are represented
in Figure 3.12,

Large Core Memory
512K 60 bit words Computation
8 banks Section
I
Small Core Memory Input-Output Peripheral
65 K 60 bit words Section Processing
32 banks 15 Chamnels Units

Figure 3.12.,1 CDC 7600 CPU Schematic

All communications with the outside are via the 15-channel Input-Output section,
which maintains buffer areas in the Small Core Memory (SCM). This core
memory with 275 nanosecond read/write cycle time is organized in 32
independent banks of 2048 words each. One bank may be accessed each
clock pulse so that ten of them may be in some stage of the read/write
cycle simultaneously giving a maximum transfer rate of one word each
27.5 nanoseconds. The Large Core Memory (LCM) is organized in 8 banks
of 64K words each, all of which may be accessed simultaneously,. again
with one access starting per clock cycle. Eight words are transferred
each read/write cycle of 1760 nanoseconds which gives the same maximum
word transfer rate as the SCM.

Programs in the 7600 may address locations in both Large and Small Core
Memories, but the programs themselves operate out of the SCM. The
general scheme is to store two programs with their data in the LCM and
to load one of them into SCM for execution. If that job is held up for
1/0 or other reasons, it is swapped back into LCM for the other job.
(Jobs may be unloaded onto a mass-storage device if the delays are too
long, so that there is always a program in LCM ready to run.)

The CPU has an organization as shown in Figure 3.12.2
7600 reference manual [ 3 ].

, taken from the
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The words of the program are read from SCM into the 12-word Instruction
Word Stack (IWS) with the corresponding addresses being stored in the
Instruction Address Stack (IAS), with the stack being filled two words
ahead of the word being currently executed. The Current Instruction
Word (CIW) register is filled from the stack with the instruction next
to operate, which can contain from two to four CPU instructions. If
the sequence of instructions in the program is purely sequential, the
IWS is like a moving window through which one can see the program two
words ahead of the current location. When a branch occurs, the destina-
tion address is checked against the entries in the IAS so that any
instructions already there may be used without further reference to
memory. Lf the required word is not found, of course, it is obtained
from SCM. Thus, it is possible for a short program loop to be entirely
contained in the IWS requiring no memory references for its operation.
It is also possible that a number of groups of instruction words will
be in the stack at once.

The instruction words are interpreted in the CIW and the instructions
are passed to the functional units for operation. These units operate
independently and according to a fixed sequence of steps. Each one is
like a "pipeline" or "delay line" into which a new set of operands, for
a computation unrelated to those already going on, may be entered at
each clock pulse. The only exceptions are the floating multiply which
has a two clock period "segmentation" and the floating divide which does
not dlow segmentation because of an iterative algorithm.

Exchanges of data between the CPU and memory are accomplished through the
A, X and B registers of which there are eight each. One of each,

A¢, X¢ and B¢, are used for special purposes but of the rest, the A
registers are used as address registers pointing to SCM operands, the

X registers as operand registers and as LCM address registers and the B
as indexing registers. Reading from SCM is accomplished by loading one
of Al through A5 with an SCM address; the contents of that address will
Jmmediately be stored in the corresponding X register. Similarly, if an
operand is loaded into X6 or X7 and an SCM address is loaded into the
corresponding A register, then the operand is immediately stored in the
appropriate place in SCM.

Single word transfers between LCM and the CPU use the X registers for
address and operand and block transfers between SCM and LCM use A¢
and X¢ as block starting address registers for SCM and LCM, respectively.

In sum, then, the 7600 is an example of a large-scale machine which
attains high performance through an architecture which allows a great
deal of parallelism in its operation and a memory-register hierarchy
that minimizes memory references.
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4.0 ALGORITHMS FOR ATC

The air traffic control function of any ATC system is quite naturally
concentrated in the set of applications programs that is a large part of
the system. These programs are called variously Task, Problem and
Functional programs and subprograms, but, nomenclature aside, it is

they that handle the actual data and transform it in ways that produce
output useful to the ATC process. They do this by implementation of

an algorithm.

An algorithm is, by definition, an ordered sequence of operations
performed on a set of input data and conditions so as to produce a
required set of output data and conditions. These algorithms can be
expressed in the form of text, flow diagrams, mathematical equations or
a combination of these. Frequently, alternate presentations are given
of the same algorithm as an aid to comprehension.

An algorithm may be implemented by means of a hand calculation; a set of
tables or nomographs; a collection of mechanical, pneumatic, hydraulic,
electrical or electronic components; or, most important for the present
purposes, a program for a digital computer system. Indeed, that these
implementations are equivalent is the basis for the substitution of
general-purpose digital computers, with their applications programs, for
special-purpose hardware in many systems.

In the following sections, we will discuss first of all how to choose,
from among the many algorithms which could perform a given function, the
one best for advanced ATC application. The remaining sections will
review some of the algorithms already implemented and/or proposed for
implementation in future systems.

.1 CHOOSING ALGORITHMS

One of the elemental principles in the design of systems, large or small,
is that each of the various subsystems should be designed with due regard
for the other components of the system. The choice of algorithms to be
implemented in ATC systems should be made with this principle in mind.

The overall objective is, of course, to do the required job, but there

are secondary considerations of cost and efficiency. Every task subprogram—-
implementation of an algorithm--must be written so as to operate in the
shortest time consistent with use of the smallest set of resources (e.g.,
storage), thus contributing to overall system efficiency. The idesal
situation, of course, would exist 1f there were a well-defined "cost
function" for program-operation which could be evaluated for each

-141-



algorithm and used as the basis for choice. No such function exists,
however, since there is no general agreement, for example, about the
"price" of a microsecond's running time as against an extra word in
memory.

Despite the qualitative nature of the conclusions which may be drawn,
however, a number of useful criteria can be developed for matching
algorithm to computer system. Clearly, there are trade-offs here between
special features of the computers (e.g., associative memories, array
processors, microprogrammed instruction codes) and the special algorithms
that take advantage of these features as opposed to the more strictly
general-purpose machines and the algorithms appropriate to them. In
other words, if increased speed is needed, one can attempt to improve the
algorithms and speed up the computer, or one can utilize a special
hardware feature at the expense of more expensive equipment less useful
for general purposes.

The four qualities on which the suitability of an algorithm will be judged
are, then: (1) closeness of model to the real world, or said another way,
correctness of output, (2) accuracy and precision of the output, (3) the
speed and efficiency of the implementation of the algorithm, and (k)

its appropriateness to the computer on which it will be operated.

One can envision a computer-aided design process wherein the designer is
provided with three things:

1. A realization of the algorithm expressed in a canonical form
and in a machine-independent language.

2. A description of the computer system in the form of tables of
parameters suitably organized.

3. A cost, or utility, function expressed in terms of the
algorithm output.

With these in hand, he goes to a computer program which in some sense,
runs the algorithm on the target computer and evaluates the utility
function. The designer may then alter the algorithm or the computer
system, or both, so as to maximize the function.

Clearly, this type of program will not be easily constructed; there are
a number of problems to be solved in its implementation. Programs do
exist, however, which do somewhat similar functions in the system design
and simulation process, so the ground is at least broken in some areas.
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4.2 RADAR CORRELATION AND TARGET TRACKING

The most cobvious process in an Alr Traffic Control system is that of
correlating sensor data--generally from radars—--with aircraft tracks
maintained by the system, followed by the extrapolation of these tracks
to the next period of the cycle. Since this is also the ATC process
with the longest history and the one on which the most labor has been
spent, we will discuss it at some length.

The correlation, smoothing and prediction algorithms for the currently
implemented ARTS III and NAS systems will be described and compared

in some detaill, fdlowed by remarks concerning extensions to other computer
systems and the introduction of newer concepts.

4.2.1 Correlation. The correlation between radar data and tracks of
aircraft is the first step in the process in both the ARTS III and NAS
systems. The object is the same in each program but the implementations
are not. The object is find for each scan by the radar, a one-to-one
pairing of radar returns and tracks being maintained by the program.
The problem is relatively straightfrrward, with the only complications
being introduced by the fact that (1) there are both primary and beacon
returns, (2) there are discrete and non-discrete beacon returns, (3)
there may be multiple coverage, and (4) there may be garbled and other
erroneous returns. The programs attempt to match the returns to the
tracks by a number of means: search areas centered on the most likely
position of the return, a hierarchy of choices from among the multiple
returns, etc.

NAS

The first step in the NAS correlation process is to assign each radar
return to a "radar sort box" (RSB), one of a set of rectangular areas
into which the sector is divided by a grid aligned with the system axes.
‘These boxes are nominally 25 n. mi. on a side. At the same time, each
track will have been assigned to a similar "track sort box" (TSB). These
areas have the same dimensions and alignment as the radar sort boxes,

but are offset by one-half the length and one-half the width of the
RSB's.

Now, the pairings of radar returns and tracks can be made: the process

is carried out for each radar datum in turn. That is, for each radar
return, an attempt is made to correlate with those tracks which are in
the four track sort boxes which intersect the radar sort box in which

the datum is Jlocated. This provides an initial filtering, as it were,

s0 as to concentrate attention on a small set of tracks and radar returns.
The pairings between the tracks and data are then tested for correlation
and those that pass are assigned a Correlation Preference Value (CPV)
depending on the type of return and its source.
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Tests for correlation are of two kinds: (1) type of return vs. type of
track and (2) distance. The former filters primary data from beacon
tracks and vice versa, while the latter chooses the datum nearest the
track. Basically, there are two types of area check: a small search
area, (SSA) check, which is expected to detect the return from the aircraft
if it was in straight-line flight, and the large search area (LSA) check,
which will detect the return if the aircraft was turning. If the track-
datum pair correlates in the small search area, the large search area
check is suppressed.

The end result of the correlation process is, hopefully, a single track-
datum pairing for each track in the system, such that the datum has a
high probability of being from that track.

ARTS

Correlation in the ARTS system also attempts to match a radar return to a
predicted track position. In this system, however, the tacit assumption

is made that there is a single sensor, and all correlation processing is

done in (r, 9) for that radar and in terms of 32 azimuth sectors scanned

by that sensor.

A 1ist of all tracks in the sector being processed, plus those in the
preceding and following two sectors, is prepared and correlation is
attempted between each track and the current sector's radar returns.

A search area, or bin, is constructed around the track position to be
used as a distance test. The dimensions of the bin are variable and
depend on the track type and its history. The history is reflected in a
quantity called "firmness" which is calculated for each track: firmness
increases with successful correlations and decreases with misses.

The correlation process involves two passes through the list of tracks

in order to resolve as many ambiguities as possible. If there are still
multiple returns correlating, a choice is made based on distance and type.
If no return is found during this "primary" correlation, a "secondary"
correlation with larger search area is attempted. The objective of this
secondary correlation is to detect and to lock on to a turning target.

At certain values of firmmess, successful or unsuccessful correlations,
as the case may be, cause transitions from one type of track to another:
e.g., from initial to normal, normal to turning, etc. An event worth -
mentioning is the creation of three tracks from one upon unsuccessful
secondary correlation under certain values of firmness; the three tracks
are left and right turning tracks and a straight-ahead, so-called,
"parent'" track.
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4.2.2 Smoothing-position. Once a radar datum/track pair has been selected,
it is necessary to account for the difference between the two. The

track position is a predicted position subject to prediction error and

the radar datum is a measured position subject also to error. The
algorithms used by both the NAS and ARTS systems for the normal
straight-line tracking is expressed as

v A
x, = X, + o bx (k.1 a)
v -
Yp =y, "% by (4.1 v)
where
VI,V
xk, yk = the smoothed position at scan k
A A
X yk = the predicted position at scan k
o = the position smoothing constant
—A — ‘_A 3
by =X - Fo by Ty TV
and ;k, ;k = radar measured position at scan k.

The same smoothing constant is used for x and y,which are parallel to
the system axes and are treated symmetrically.

NAS

In the NAS system, the automatic tracking program, which does the position
smoothing among other things, is called every > seconds (nominally) to
operate on track/datum pairs that have been produced by small search area
correlation. The smoothed position for all such is computed with equations
(4.1 a,b) with the smoothing constant a being a fixed system parameter
taken from a table and depending on the type of return that has been
correlated with the track.

Once every ten seconds, the large search area smoothing is done. T.e.,
for those pairs which had a datum in the large search area, the program
works only half as often. Furthermore, the smoothing equation is not the
same as for SSA smoothing. The smoothing of data correlated in the large
search area puts more weight on deviations perpendicular to the flight
path than along it; this is consistent with the expectation that LSA-
correlation detects turning targets. '

The equations for LSA smoothing are
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v A AN A
= + T+
x =X +toy Dpxy g0, Bpyp g (4.2a)
n A ~ VS
B = + oy DRyn—l + O ERxn—l (4.20)
where o = longitudinal smoothing consbtant

o, = lateral smoothing constant

A
Xeo YR 7 velocity components computed at scan k

2 A
D = Axk Xk-1 + Ayk yk—l

7 ey = longitudinal component unit vector
(o + ¥ip)

A/-\ AA
XeVk-1 ~ BVe1
E,_ =

~ S = lateral component unit vector
(x2_; + V1)

The coefficients, o. and a,, are also system parameters whose values depend
on the type of return correlated.

ARTS

The ARTS system uses equations (l.la,b)for position smoothing with the
smoothing coefficient o being chosen as a function of the track type and
firmness: in general, the less firm the track, the smaller the smoothing
factor.

Note that correlation of radar data with tracks was done in terms of

{r,0) while smoothing of data was done in (x,y); this implies a coordinate
conversion of the x, y predicted positions back to r, 6. There is a net
saving in doing it this way, for only one computation per track is required
as opposed to one per radar return, including both beacon and primary

as well as noise returns.
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4.,2.3 Smoothing-velocity. Velocity smoothing, prediction or, even
better, correction is done in general by the use of the equations:

o
= + E_
= + = o
Yn yn—l T Ayn_l ( 3b)
s th
where xk, yk = the components of predicted velocity for k scan
B = the velocity smoothing coefficient
T = scan time
Ax

Ayk are as before.

Note that velocity is not measured, as position is.

NAS

Velocity smoothing in the NAS system is done only for those tracks for
which flight-plan information is not available. These are called "Free'
tracks as opposed to Flight-Plan-Aided tracks or "FLAT". The velocity
used in subsequent calculations for FLAT tracks is the flight-plan
velocity.

Free tracks in the small-search area use equations (4.3a,b) with values
of the smoothing coefficient taken from'a prestored table according to
the CPV, as in position smoothing.

Smoothing in the large serach area uses the following equations.

AA By A B A
X =X + _ D +

no Ty T 0% 7 e (k. ha)
A A 8 N =
Yy 37 + Pl B )

n n-1 Dy + "2

T -l — Ex 1 (k.4o)
where By = longitudinal smoothing constant

B, = lateral smoothing constant
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Other quantities are as defined above. The values of B_ and B_ are
again dependent on the type of radar return correlated. 2

ARTS

The ARTS system uses equations (L.3a,b) for velocity smoothing with the
value of the smoothing constant depending, as before, on the track
firmness.

4.2.4 Position Prediction. In general, position prediction is done
using the equation:

A v A

= + R
X =% x T (4.5a)
A v A
Tpep =¥ T (4.5b)

where all of the terms are as defined above. This is a straight-line
prediction for the interval in question, but of course, any heading
change by the aircraft is reflected in the changing velocity components.

NAS

The NAS system uses the equations (4.5a,b) in a straightforward way,
the expectation being that the use of LSA velocity smoothing as discussed
above is enough to ensure tracking during turns.

ARTS

In the ARTS system, on the other hand, a distinction is made between
_straight-line tracking and turning tracking. In the former, equations
(4.5a,b) are used, while in the latter, the following equations are
used: .

A " A, A 1/2

- 2 2
LS (x> + yo) T cos(6_ + RT) (4.6a)
A N A, A, 1/2

= + (%% + y2 i + .
Yoey = ¥a (xn yn) ¢ 51n(6n RT) (4.6Dp)

where R = rate of turn

ek heading of track at scan k

and the other terms are as defined above.
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These equations are used on the basis that aircraft, when they turn, do so
at a constant, universal rate. Apparently, this is nearly so within speed
classes, with the breakpoint being about 210 knots. The rate above 210
knots is taken as 1.5 degrees/second and the rate below that speed as

3 degrees/second.

As was pointed out earlier, straight and turning tracks corresponding
to the same aircraft are carried under certain circumstances.

4,2.5 Timing. FEach of the systems is designed to work in synchronism
with the scan of a search radar: the basic timing cycle being one scan.
The NAS system assumes a nominal 12 second scan and the ARTS system a L
second scan. The implication is that a single sensor is supplying the
data (or the unlikely event that completely syrichronous multiple sensors
are used). The extension to multiple sensors is discussed below.

NAS

Bach scan of the radar is divided into two equal subscans; the actual
scan time is a system parameter initially set to 10 seconds.

The radar correlation program runs about once per second, processing
whatever data happens to have been gathered in the preceding second.

At the start of the second subscan, the tracking program will update the
position of all tracks in the system, either updating on the basis of
small search area data or extrapolating in the absence of such data. The
updating is done from a point midway into the first subscan to a point
midway into the second subscan.

At the start of the first subscan, the tracking program will operate

on all tracks with data correlated in the small search area, then on
tracks with large search area data but no small search area data during
the last scan and finally those tracks with no data. The updating is
done from a point midway in the second subscan of the preceding scan to
the middle of the first subscan of the current scan.

The objective of this relatively complex treatment is to match the dynamics
of the aircraft to that of the sensor. After all, at 550 miles per hour,
the aircraft moves about 1.5 miles in the ten second radar scan.

ARTS

As implied earlier, the timing of all processing in the ARTS system is
keyed to the 32 sectors into which each scan of the radar is divided.
That is, each routine, such as the tracking program, for example, must
operate once each 125 milliseconds, corresponding to the rotation of the
antenna through one sector.
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During the time the antenna is in a particular sector, say S, all of the
various subprograms run (e.g., primary and secondary correlation, smoothing,
prediction, etc.) but each will be working on a different set of tracks
and/or radar returns, according to a fixed preset schedule. For instance,
primary correlation will be working with tracks in sector (8-4), secondary
correlation with tracks in sector (S-6) and prediction in sector (S-8).

Since the ARTS system operates at a relatively short range, the motion

of targets in azimuth may introduce large angular errors if it is assumed
that the time between radar observations is equal to the scan time.
Therefore the predicted position is subjected to a second-order correction
thusly:

/\1 _ A + PAS
= A b,
X041 xn+1 xAT (h,7a)
/o
81 = F 4T 4. Tb
U S (4.70)

Ay A
where xé, yi = corrected predicted position corrdinates

and

st = (A A (1.8)
T = - A 2
(An+l n T
A A A
where Ak = gzimuth corresponding to (xk, yk).

This correction is made only if |ATIZ_1/M second.

4.2.6 Summary and Extensions. The preceding discussion makes it clear
that although the NAS and ARTS III systems make use of correlation and

tracking algorithms that seem on the surface to be similar--the "simple
o,B-tracker"--they do in fact use quite dissimilar and far from simple

algorithms. The departures from the straight-forward representation of
equations 4.1, 4.3 and 4.5 have been introduced to make what seems like
a simple and reasonable formulation work in the real world.

The earliest changes and additions to the algorithms were made in the SAGE
era when the concept was introduced of a "time-frame" roughly synchronized
with the rotation of the main sensors. Next, attempts were made to overcome
the real limitation of this tracker; namely, that the two requirements

on the system, stability of tracking in the presence of noise and sensitivity
to target maneuvers, are contradictory. The use of different sized and/or
differently aligned search areas, variable tracking constants depending

on track history and auxiliary equations for turning tracks has helped

make this technique at least viable but only at the expense of vastly
increased complexity, where complexity means increased computing time and
storage requirements.

-150-



Maeny people have suggested a new look at tracking with the dual aim of
providing better tracking and a more efficient algorithm from the point-
of-view of computation. The technique most often mentioned is the one
adapted from Kalman's work in optimum control and filter theory. This
formulation can be stated as follows:

v A A
x =x +K [z -h(x)] (4.9a)
= e
A N
x =f£(x) (4.9v)
n+l n
n
where x = the smoothed state vector, position and velocity, at time tk’
k
A
X = the predicted state vector at t_,
= k
K = the matrix of gain coefficients defining the smoothing
k  process at tk,
z = the measurement vector at t_,
5 k
Qﬂ;) = the function of target state defining the measurement process,

and  f(x) = the function of target state defining the target motion.

There are various simplifying assumptions which can be made, such as
linearizing h and f and decoupling motions in some of the directions. These
-simplifications will introduce errors, of course, but with the proper
analysis, the errors can be kept small.

A second area in which research could produce better algorithms in the
sense of efficiency is in the area of parallel processing. There is g
great deal of interest being shown in the development of array and parallel
processors and associatively addressed memories which could be used to
implement newer forms of tracking equations. The natural view of the
situation is that the correlation of data with and the tracking of all of
the targets can be carried out simultaneously in parallel. - This may be

the correct approach, or there may be a different organization, say in
terms of areas, that will give better results.
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